Social Exclusion and Optimal Redistribution*

Thomas Aronsson† Spencer Bastani‡ Khayyam Tayibov§

April 9, 2022

Abstract

We integrate social exclusion, operationalized in terms of long-term unemployment, into the theory of optimal redistributive taxation. Our results show how an optimal mix of education policy, public employment, and support to the unemployed, in conjunction with optimal income taxation, contributes to redistribution and reduced long-term unemployment. The second-best optimum most likely implies overprovision of education relative to a policy rule balancing the direct marginal benefit and marginal cost, whereas public employment and unemployment benefits are correspondingly underprovided. Our calibration shows how the policy mix varies with the government’s preferences for redistribution and the characteristics of those risking long-term unemployment.

Keywords: long-term unemployment, education, optimal income taxation, public sector employment

JEL classification: H21, J24, J45, I21

*The authors would like to thank The Marianne and Marcus Wallenberg Foundation (MMW 2015.0037) and the Swedish Research Council (2020-02208) for generous research grants.

†Department of Economics, Umeå School of Business, Economics and Statistics, Umeå University, SE-901 87 Umeå, Sweden. E-mail: thomas.aronsson@umu.se

‡Institute for Evaluation of Labour Market and Education Policy (IFAU), Uppsala and Research Institute for Industrial Economics (IFN), Stockholm, Sweden; Uppsala Center for Fiscal Studies (UCFS), Uppsala Center for Labor Studies (UCLS), CESifo, Germany. E-mail: spencer.bastani@ifau.uu.se.

§Department of Economics and Statistics, School of Business and Economics, Linnaeus University, Växjö, Sweden. E-mail: khayyam.tayibov@lnu.se.
1 Introduction

Long-term unemployment and social exclusion have become major concerns in many countries. These challenges derive in part from rapidly changing labor markets, where jobs are becoming increasingly specialized and skill-intensive, as well as from cross-country migration flows in combination with weak labor market integration among certain immigrant groups. Recessionary shocks leading to structural changes in the labor market can also cause significant long-term unemployment and social exclusion by making it difficult for laid off workers to reenter the labor market, most recently illustrated by the global covid-19 pandemic. An important question is how the tax system and public expenditure programs should respond to these challenges. The overall purpose of this paper is to analyze the policy implications of social exclusion, both in terms of optimal income taxation, and in relation to other policy instruments such as education policy and public employment programs.

Social exclusion typically refers to disadvantages in important dimensions, which limit the possibility of participating in society. Although the concept of “social exclusion” lacks a precise, or operative, definition, several authors such as Atkinson (1998) and Sen (2000) describe a set of key characteristics on the basis of which the concept can be understood and operationalized. More specifically, Atkinson characterizes social exclusion in terms of three components. The first is relativity, which means that social exclusion is a relative concept. In other words, it is not possible to assess whether an individual is socially excluded in isolation, i.e., without reference to other people or contexts. Lack of income or other financial resources may deprive individuals of opportunities available to others. The second component is agency, meaning that the acts of the individual herself, or the acts of other market participants, may lead to social exclusion. For instance, becoming unemployed or dropping out of the labor force force might lead to social exclusion through a lost social network or loss of contact with people outside the family. The third component, finally, is what Atkinson refers to as dynamics, implying that socially excluded people are typically unable to influence their living conditions, or vital parts thereof, in a longer time-perspective.

Our approach is to model social exclusion in terms of long-term unemployment, i.e., a lack of attachment to the labor market, and the associated restraint on consumption possibilities. Although we acknowledge that the concept of social exclusion is broader than just encompassing labor market attachment, the latter accords well with the three elements discussed above.

1Research in social psychology shows that exclusion from social contexts may cause a number of negative reactions by the individual, such as depression, low self-esteem, inability to reason, and anger, as well as antisocial behavior. See Hutchinson, Abrams, and Christian (2007) for an overview.

2This approach is consistent with—not as broad as—the “cumulative disadvantage” perspective discussed in sociological literature, i.e., a downward spiral where unemployment leads to economic deprivation and social isolation which, in turn, will make re-employment more difficult and increase the risk of long-term unemployment (see e.g., Paugam, 1996).

3See Sen (2000) for a thorough discussion of different aspects of social exclusion. Some of these aspects (such as being excluded from a livelihood, permanent employment, and earnings) are broadly captured by our approach, whereas other aspects (such as democratic participation, respect, and understanding) are beyond the scope of our
as well as with results from empirical research. In our framework, long-term unemployment is the outcome of individual choices in response to the opportunities provided by the government (agency), the long-term unemployed have fewer resources available for consumption than those in employment (relativity), and the lack of labor market attachment makes them unable to influence their economic advancement (dynamics).

To this end, we consider a discrete, intertemporal version of the Mirrlesian (1971) optimal income tax problem augmented with a number of public expenditure programs in order to examine how public policy ought to respond to the problem of long-term unemployment. The policy instruments at the disposal of the government are general taxes on income and savings, respectively, a transfer payment received by people enrolling in education, a public input good in education production, a public employment program where the government decides on the wage rate and the effort requirement, and unemployment benefits. The paper combines theoretical analysis, which aims to characterize the policy rules for marginal taxation and the public expenditure programs referred to above, and numerical simulations illustrating how public policy optimally should respond to a wide range of circumstances pertaining to the economic environment.

The key ingredients of our model are the following. Individuals live during three periods, work in the first two (if employed) and are retired in the third. There are three skill-types that differ in terms of productivity. Skill-types 1 and 2 in our setting refer to (conventional) low-skilled and high-skilled individuals, respectively, whose before-tax wage rates are determined by their innate productivities throughout their whole working lives. We also introduce a novel skill-type, referred to as type 0, for whom the market productivity falls short of the innate productivity (which can be either low or high). More specifically, we assume that the market productivity of type 0 individuals is not high enough for them to become employed in the regular labor market.

Besides differing in their innate productivity, type 0 individuals are also assumed to differ in their costs of training (possibly due to factors relating to family background and peer-group analysis.

4 Bradley et al. (2003) examine the transition between different labor market states and find evidence consistent with the appearance of social exclusion. Workers in the lower end of the skill-distribution appear to be trapped in what the authors call a “vicious cycle” of employment in low-skilled jobs combined with periods of unemployment and periods out of the labor force. As such, their ability to influence their living conditions is severely limited compared to other workers. Pohlan (2019) examines the casual effects of job loss on a number of possible correlates with social exclusion, such as the perceptions of lost economic resources, social integration, life satisfaction, mental health status, social participation, social status, and self-efficacy. She finds that job loss has a negative effect on a number of these measures, lending support to the idea that unemployment may lead to social exclusion.

5 The idea that public employment programs can be beneficial for the employment prospects of groups with a weak labor market attachment is supported by empirical research (see, e.g., Mörk et al. 2021 for a recent evaluation of a temporary public employment program in Sweden).

6 Our framework is based on, and extends, the discrete models of optimal nonlinear income taxation originally developed by Stern (1982) and Stiglitz (1982). While a model with only two conventional skill-types may seem restrictive, we consider it a reasonable simplification given that we focus on the behavior of type 0 agents and policies to prevent long-term unemployment, rather than characterizing the shape of the optimal income tax schedule for conventional agents.
effects in school), and can choose between unemployment in the first period, in which case they will remain unemployed throughout their working lives, public employment, or education. The latter two options allow them to increase their market productivity sufficiently to gain regular employment in the second period. Whereas education in principle opens up for all type 0 individuals to reach their true innate productivity, even if this is not the likely outcome due to heterogeneity in effort costs, public employment only gives them the minimum productivity needed in the regular labor market. Therefore, an important feature of our model is that inactivity among type 0 individuals in the first period leads to long-term unemployment. This is costly for the affected individuals as well as for society. The social objective is assumed to be a weighted average of individual utilities, where the weights reflect the preferences for redistribution, combined with a social preference for alleviating the problem of long-term unemployment.

Turning to the results, the policy rules for marginal income and savings taxes are similar to those derived for model economies without unemployment. However, an important difference is that the policy rules for marginal income taxation take into account the endogeneity of the skill distribution of the working population, the latter being affected by the opportunities for labor market integration provided by the government. The marginal tax policy does not directly affect the discrete activity choices among type 0 agents, as they are based on utility comparisons and thus total tax payments rather than marginal incentives.

The policy rules for the wage and the effort (hours of work) requirement in public employment, the education transfer, the public education input, and the unemployment benefit all depend on how each such instrument influences the activity choices of type 0 individuals and therefore the present value of net tax revenue available for redistribution. For instance, if (realistically) the present value of net tax revenue is higher when type 0 individuals choose education instead of public employment, ceteris paribus, the tax revenue effects imply (i) a lower wage in public employment, (ii) a higher education transfer, and (iii) a higher public education input compared to the case where both these activities generate the same present value of net tax revenue. In a similar way, concerns for tax revenues place severe restraint on the unemployment benefits, as does the aversion that society attaches to long-term unemployment.

In the numerical analysis, we examine how the resource allocation and public policy respond to changes in the government’s preferences for redistribution, the spread of the productivity distribution, and the share of type 0 agents in the economy as a whole. This analysis reveals that a stronger government preference for redistribution and a mean preserving increase in the spread of the productivity distribution, respectively, leads to more generous unemployment benefits and increased long-term unemployment among both latent skill-types, albeit in particular among the latent low-skilled. An increase in the share of type 0 agents leads to increased public employment among the latent low-skilled accompanied by a decrease in educational attainment.

\[\text{In his study of long-term youth unemployment in the EU, Kieselbach (2003) finds that low qualifications and passivity in the labor market among unemployed youth increase their risk of social exclusion. Our model captures these properties in the sense that low market productivity in combination with inactivity during the first period of life leads to exclusion from the labor market.}\]
and a slight decrease in unemployment, respectively, whereas the activity choices among the latent high-skilled are less sensitive in this case. Furthermore, each of these changes makes redistribution more costly in equilibrium, which implies higher marginal taxation of the low-skilled as well as increased average taxes facing the high-skilled.

Our study contributes to the literature in at least three ways. First, and to the best of our knowledge, this is the first attempt to integrate social exclusion in the modern theory of optimal redistributive taxation and public expenditure. Earlier studies have addressed some issues related to the characteristics of social exclusion, such as poverty alleviation (e.g., Pirttilä and Tuomala, 2004; Kanbur, Paukkeri, Pirttilä and Tuomala, 2018), unemployment (e.g., Marceau and Boadway, 1994; Lehmann et al. (2011); Aronsson and Sjögren, 2004; Hungerbühler et al. 2006; Aronsson and Micheletto, 2021), and social comparisons (e.g., Oswald 1983; Aronsson and Johansson-Stenman, 2008, 2018; Kanbur and Tuomala, 2013). Yet, none of them examines the long-term consequences of inactivity in the labor market and the policy implications thereof.

Second, we contribute to the research on optimal income taxation and occupational choice, where Diamond (1980), Boadway et al. (1991), and Saez (2002) are early contributions. Recent studies in this area have been concerned with, for example, general equilibrium effects on wages caused by sector re-allocations of labor, such as Rothschild and Scheuer (2013), and externalities from job choice, as in Rothschild and Scheuer (2016) and Lockwood et al. (2016).

In contrast to these studies, we analyze how general income taxes, education policy, public employment, and support to the unemployed should be simultaneously designed to induce people to make occupational choices that promote distributional objectives and alleviate the problem of long-term unemployment.

A third contribution refers to the joint design of income taxation and education policy in order to foster human capital and learning-by-doing; see, e.g., Bovenberg and Jacobs (2005), Maldonado (2008), Findeisen and Sachs (2016, 2021), Stantcheva (2017) and da Costa and Santos (2018). The novel focus of our study is to show how an optimal tax and education policy (along with other policy instruments) accomplish redistribution by enabling workers to realize their true underlying productivity. In this sense, our analysis of education is more about the validation of skills than the promotion of (new) human capital.

The outline of the paper is as follows. Section 2 presents the model and the private decision-problems, whereas the public decision-problem is presented and discussed in Section 3. In Section 4, we characterize the optimal policy rules for marginal tax policy, education policy, public sector employment, and unemployment benefits. The numerical model is presented in Section 4, and the numerical results (including a number of sensitivity analyses) are discussed

8 A general treatment of optimal income taxation allowing for intensive margin labor supply and a labor force participation decision is offered by Jacquet et al. (2013). See also Hansen (2021).

9 See also related work on the simultaneous tax treatment of earnings and entrepreneurial income (Scheuer, 2014); technical change and optimal taxation (Ales et al., 2015); redistributive taxation in economies where workers have an absolute advantage in jobs suited for them (Boadway et al., 2017); optimal sector-specific income taxation in economies where skills are not perfectly transferable (Gomes et al., 2018); and productivity-enhancing regional migration when skills are not perfectly transferable (Kessing et al., 2020).
in Section 6. Section 7 concludes the paper, while proofs and some other mathematical results are presented in the Appendix.

2 Model

Types of agents There are three types of individuals in the economy: types 0, 1, and 2. Each individual lives for three periods. Individuals of types 1 and 2 are employed in the first two periods and are retired in the third. Our primary focus lies on type 0 individuals, who are not sufficiently productive to gain regular employment. As will be explained in detail below, type 0 agents choose between unemployment, education, and a public sector employment program in the first period. In turn, these activity choices determine their future market wage rates and employment opportunities.

Market productivity Individuals of types 1 and 2 (sometimes referred to as "conventional" agents) are characterized by innate productivities θ^1 and θ^2, where $\theta^2 > \theta^1$, and have market productivities of $w^1 = \theta^1$ and $w^2 = \theta^2$. By contrast, individuals of type 0 can be either of innate productivity θ^1 or θ^2, but their market productivities are not equal to their innate productivities. Instead, irrespective of their innate productivity, type 0 individuals have a marginal market productivity of $\alpha \theta^1$ in the first period where $0 < \alpha < 1$.

Minimum wage There is a minimum wage in the regular labor market, w^1, defined as the market wage rate of type 1. As $\alpha \theta^1 < w^1$ by assumption, type 0 individuals cannot find regular employment in period 1. On the other hand, if $\alpha \theta^1$ exceeds what we can think of as a "technological minimum wage" (the sense that there are productive tasks given the technology of the economy) equal to $w < w^1$, an individual of type 0 can be employed in the public sector. We assume this condition to be satisfied, which ensures that public employment is available to all type 0 individuals. The discrepancy between w^1 and w can stem from minimum wage legislation or the unionization of the labor market, and is a key feature of modern welfare states facing the problem of weak labor market attachment among certain groups of the population.

Effort costs In addition to differing in their innate productivity θ, type 0 individuals also differ in their effort cost ξ, assumed to be continuously distributed with positive support. The parameter ξ will play a key role in determining whether innately high productivity individuals find it optimal to attend education, and thereby realize their true innate productivity, or settle

10 We assume that firms can observe the productivity of workers, thereby abstracting from the screening/signaling possibilities available to firms/workers analyzed by, e.g., Stantcheva (2014), Bastani et al. (2015, 2021), and Craig (2021). We also abstract from labor market discrimination (see, e.g., Blumkin et al. 2007).

11 An alternative would be to assume that the market productivity in the first period is given by $\alpha \theta^i$, $i = 1, 2$. This would open up for the possibility of type 0 agents with latent productivity θ^2 to obtain a job with a market wage rate of $\alpha \theta^2$ in the first period, provided $\alpha \theta^2 \geq w^1$. In the case where $\alpha \theta^2 > w^1$, this would require the introduction of an intermediate skill type and thereby complicate the analysis considerably.
for public employment and lower career prospects in the future. One interpretation of ξ is that it represents an effort cost attached to training. Another is that it represents an inherited attitude towards hard work, acquired when young and influenced by family background or peer-effects in school. In the longer time perspective, we may think of the distribution of (θ^i, ξ) to be endogenous, reflecting for instance the type of migration to a country and the efficiency of measures taken by the government to promote integration and the validation of migrants’ skills. As the importance of effort cost differences is likely to decrease over time among those who are active in the first period (those entering education or public sector employment in our model), we assume, for simplicity, that the effort cost differences vanish completely for agents having completed their training and entered the regular labor market in the second period.\footnote{Interpreting type 0 workers as migrants, one component of the effort cost relates to learning the language of the host country, and there is likely to be heterogeneity in the language skills upon arrival. However, after a few years, these effort cost differences are likely to diminish as those with weak initial language skills catch up.}

Savings decisions Individuals can save in the second period, thereby financing their retirement consumption in the third. There is no saving choice in the first period, which simplifies the analysis considerably: all that matters for the labor market behavior and outcome of an agent in the second period is her productivity. This simplification is not important for the policy implications of labor market exclusion.

Tax instruments As we are interested in analyzing policy problems faced by modern welfare states, it is important to flexibly capture the tax-and-transfer system. We assume that the government levies taxes on labor income and savings, given by general nonlinear tax functions $T_j(\cdot)$, $j = 1, 2, 3$, where the tax payments can be either positive or negative (latter representing a transfer payment). The functions T_1 and T_2 represent the labor income taxes paid in periods 1 and 2, respectively, and the function T_3 denotes a savings tax paid in the third period. As the tax functions T_1 and T_2 are not restricted to be the same, we do not rule out age-dependent labor income taxation.\footnote{Although the optimal income tax can, in principle, also be dependent on the income history of the agent, this is not the case in our model. The reason is that individuals with market productivity θ^i ($i = 1, 2$) in the second period will behave identically and be equally well off during their remaining lives, regardless of whether they were a conventional type i or a type 0 in the first period.}

Conventional type 1 and type 2 agents Individuals of types 1 and 2 are employed in the regular labor market during both periods of their working life. They face a standard life-cycle problem and solve:

$$W(\theta^i) = \max_{h_1, h_2, s} \left\{ u(\theta^ih_1-T_1(\theta^ih_1))-v(h_1)+\beta(u(\theta^ih_2-T_2(\theta^ih_2)-s)-v(h_2))+\beta^2 u(s-T_3(s)) \right\},$$

where h_1 and h_2 denote the labor supplied in periods 1 and 2, respectively, β denotes the utility discount factor, and s denotes savings in period 2. The function $u(\cdot)$ denotes the utility derived...
from consumption and is assumed to be a twice differentiable, increasing, and strictly concave, while \(v(\cdot) \) is a twice differentiable, increasing, and strictly convex function measuring the disutility of effort.\(^\text{14}\) Since our focus is on type 0 individuals (and the options available to them), we abstract from possible effort cost heterogeneity among individuals of types 1 and 2.

2.1 Activity choices

We now describe the activity choices available to type 0 agents in the first period.

Public employment If a type 0 individual is employed in the public sector during the first period, her marginal productivity is given by \(\alpha \theta^1 \) and she receives a wage, \(w_P \), in return for a fixed labor supply of \(h_P \) units of time. We will later treat \(w_P \) and \(h_P \) be control variables of the government, meaning that the government is assumed to be able to monitor work hours in public employment. The wage in public employment satisfies \(w^1 > w_P > \alpha \theta^1 \). Thus, a key feature of public employment is that workers are paid above their marginal product but below the minimum wage in regular employment (a private firm would not offer such a contract as it would yield negative profits).

In the second period, after having worked in the public employment program, the marginal market productivity increases from \(\alpha \theta^1 \) to \(\theta^1 \), and the agent works in a regular job supplying \(h_2 \) units of labor.\(^\text{15}\) Formally, the indirect life-time utility of a type \((\theta, \xi) \)-agent choosing public employment is:

\[
V^P = \max_{h_2, s} \left\{ u(w_P h_P) - \xi v(h_P) + \beta u(\theta^1 h_2 - T_2(\theta^1 h_2) - s) - v(h_2)) + \beta^2 u(s - T_3(s)) \right\}. \tag{2}
\]

All individuals enrolling in the public employment program in the first period (irrespective of their innate productivity) will earn the market wage \(\theta^1 \) in the second period. This means that individuals of type 0 with innate productivity \(\theta^2 \) do not realize their maximum potential productivity. This is quite natural, as the goal of the public employment program is for individuals to learn the basic skills required for regular employment (e.g., accumulate work experience, establish a social network, and obtain language skills); they are not obtaining the more advanced qualifications required for high-skill jobs.

\(^\text{14}\)Without loss of generality, we assume that the interest rate is zero and replace the capital income tax with a tax on savings. These two policy instruments are equivalent for any positive interest rate as long as capital income is observable for tax purposes.

\(^\text{15}\)Thus, public employment has a learning-by-doing component, see, e.g., Stantcheva (2017) and Makris and Pavan (2021).
The purpose of education is to enable agents to transform their innate skills into marketable skills. The wage offered in the second period is assumed to take the following form:

\[
 w(e, \theta, q) = \begin{cases}
 \theta^2, & \text{if } g(e, \theta, q) \geq \theta^2 \\
 \theta^1, & \text{if } \theta^1 \leq g(e, \theta, q) < \theta^2 \\
 0, & \text{if } g(e, \theta, q) < \theta^1,
\end{cases}
\]

where \(g(\cdot)\) is a twice differentiable human capital production function, which is increasing in education effort, \(e\), innate ability \(\theta\), and a publicly provided education input, \(q\). It also satisfies \(\partial^2 g / \partial q \partial e > 0\), implying that a higher \(q\) makes education effort more productive. For a given \(\theta\) and \(q\), the function \(g\) describes the education effort level required to achieve a certain productivity in the second period. Note that when \(e\) is chosen such that \(g(e, \theta, q) = \theta\), the individual realizes her underlying latent productivity. We assume that an individual can never realize a productivity higher than his/her underlying latent productivity, such that \(g(e, \theta, q) \leq \theta\).

Given the technology described above, individuals with innate productivity \(\theta^1\) will choose the minimal effort \(e\) allowing them to realize their innate productivity \(\theta^1\), whereas individuals with innate productivity \(\theta^2\) may either choose the minimal effort level leading to the realized productivity \(\theta^1\), or the minimal effort level leading to the realized productivity \(\theta^2\), in the second period. We refer to the effort level where an agent realizes his/her true productivity as "high effort", whereas "low effort" refers to the effort level where an agent realizes a productivity lower than his/her latent productivity, the latter option being relevant only for the latent high-skilled. The low and high effort levels are defined as follows:

\[
 e_L(q) \quad \text{as the solution to} \quad g(e, \theta^2, q) = \theta^1 \\
 e_H^i(q) \quad \text{as the solution to} \quad g(e, \theta^i, q) = \theta^i, \quad i = 1, 2.
\]

We focus on the multiplicative specification \(g(e, \theta, q) = \kappa(e, q)\theta\), which implies

\[
 g(e_L, \theta^2, q) = \theta^1 \iff \kappa(e_L, q) = \theta^1 / \theta^2, \quad \text{and,} \quad g(e_H^i, \theta^i, q) = \theta^i \iff \kappa(e_H^i, q) = 1.
\]

A convenient consequence is that \(e_H^1(q) = e_H^2(q)\) and we can drop the superscript \(i\) and simply refer to \(e_H(q)\) in the derivations below.

One interpretation of education is that it serves to *increase* an individual’s skill level; another is that it serves the role of *validating* these skills, as in enabling an immigrant with a foreign medical degree to practice as a medical doctor in the host country. In the latter context, the variable \(q\) represents complementary inputs that foster integration, for instance, the availability of government programs allowing immigrants to learn the language of their host country, or some other measure to foster integration that most likely would be underprovided by private markets.\(^{16}\)

\(^{16}\)Another possibility would be for the government to lower the qualifications needed to practice in a certain...
When enrolling in education, an agent receives a transfer payment equal to c_E. To qualify for this transfer, we realistically assume that the government can enforce some minimum effort level in education (e.g., some form of an attendance requirement), denoted by ξ which is sufficiently high so as to ensure that individuals will never choose to attend education programs that would, according to (3), lead to a market productivity of zero.\footnote{Attending education without (or with a very low) effort would be a valuable strategy for agents only if the education transfer c_E is greater than the unemployment benefit (explained below), thereby delivering a higher first period utility.} Formally, the indirect utility of a type 0 individual with innate productivity θ^1 enrolling in education in the first period is

$$V_E(\theta^1, \xi) = \max_{h_2, s} \left\{ u(c_E) - \xi v(e_H(q)) + \beta u(\theta^1 h_2 - T_2(\theta^1 h_2) - s) - v(h_2)) + \beta^2 u(s - T_3(s)) \right\}.$$

(7)

For type 0 agents with innate productivity θ^2, the corresponding indirect utility becomes

$$V_E(\theta^2, \xi) = \max\{V_{E1}(\theta^2), V_{E2}(\theta^2)\},$$

(8)

where

$$V_{E1}(\theta^2, \xi) = \max_{h_2, s} \left\{ u(c_E) - \xi v(e_L(q)) + \beta u(\theta^1 h_2 - T_2(\theta^1 h_2) - s) - v(h_2)) + \beta^2 u(s - T_3(s)) \right\}$$

$$V_{E2}(\theta^2, \xi) = \max_{h_2, s} \left\{ u(c_E) - \xi v(e_H(q)) + \beta u(\theta^2 h_2 - T_2(\theta^2 h_2) - s) - v(h_2)) + \beta^2 u(s - T_3(s)) \right\}.$$

Based on these decision-problems, we can identify regions in the (θ, ξ)-space where $V_E(\theta^2, \xi) = V_{E1}(\theta^2, \xi)$ and other regions where $V_E(\theta^2, \xi) = V_{E2}(\theta^2, \xi)$, which depend on the tax and expenditure policy chosen by the government. Thus, the tax system not only affects the extensive-margin of education attainment, but also the “intensive-margin” education choices of type 0 workers with innate productivity θ^2.\footnote{The distinction between intensive and extensive margins is perhaps not so clear in the current setting with only two education levels, as we could just as well consider the agent choosing from the discrete states $\{P, E_1, E_2, U\}$. However if education effort were to be continuous, the individual would choose among $\{P, E(e^*(\theta, \xi)), U\}$ where $e^*(\theta, \xi)$ would be the optimal education effort conditional on choosing education.}

Unemployment Finally, if a type 0 individual chooses to become unemployed in the first period, then this choice will lead to long-term unemployment, i.e., unemployment also in the second period. As such, this individual will have no labor market attachment at all. In the case of unemployment, the indirect utility of the agent is given by:

$$V_U = \max_s \{u(b_1) + \beta u(b_2 - s) + \beta^2 u(s - T_3(s))\},$$

(9)

where b_1 and b_2 is a profile of unemployment benefits decided on by the government. It is important to keep in mind that even though individuals can be regarded as "choosing" unemployment, it is not really a conventional choice as agents opting for unemployment are those profession. However, this approach would entail other costs not captured by our framework.
with the highest effort cost, who are the least capable of escaping long-term unemployment and achieving economic advancement.

3 The policy problem

The government (or social planner) raises revenue and redistributes via nonlinear taxes on income and savings. It also offers a public employment program, provides education financing and unemployment benefits, as well as a public input good which increases the efficiency of education. The government can observe income and savings at the individual level, whereas the skill level and the effort cost are private information. Thus, the government is neither able to verify education effort nor labor supply. These are standard assumptions in Mirrleesian models of optimal income taxation. The government is first mover vis-a-vis the private sector, and will be assumed to commit to the optimal tax and expenditure decided on before the individuals make their choices.

Access to general taxes on earnings and savings means that the government can implement any desired combination of life-cycle labor supply and consumption for both latent skill-types subject to incentive compatibility constraints and the public budget constraint. Therefore, by the Taxation Principle (Hammond, 1979), we can equivalently let the government choose these allocations directly by using incentive compatibility mechanisms such that each individual (weakly) prefers the allocation intended for her type over the allocations intended for other types. The policy rules for marginal taxation can then be derived by combining social and private first-order conditions. The other policy instruments, i.e., the education policy (the transfer and public input good), the public employment program (wage and hours of work requirement), and the unemployment benefit are chosen directly by the government.

Let \((y^i_t, c^i_t)\) denote the pre-tax income/consumption bundles in period \(t = 1, 2\) and \(c^i_R\) the retirement consumption offered to individuals of type \(i = 1, 2\). For individuals of types 1 and 2, who realize their innate productivity immediately (and are therefore in regular employment throughout their working lives), the life-time utility is given by

\[
W^i = u(c^i_1) - v(y^i_1) + \beta (u(c^i_2) - v(y^i_2)) + \beta^2 u(c^i_R), \quad i = 1, 2,
\]

(10)

if choosing the bundles intended for them by the government.

In a similar way, the life-time utilities of type 0 individuals, who choose the bundles intended

19. The assumption of full commitment simplifies the analysis considerably in an already quite complex model, although we realize the potential time-inconsistency problem that this commitment gives rise to. Aronsson and Sjögren (2016) and Brett and Weymark (2019) analyze time-consistent optimal taxation in different contexts under asymmetric information.

20. Note that \(T_1\) can be used to implement any desired combination of labor supply and consumption for each skill-type in period 1, whereas \(T_2\) and \(T_3\) can be used to implement any desired combination of labor supply in period 2 and consumptions in periods 2 and 3 for each skill-type.
for them, are

\[V_P(\theta^i, \xi) = u(w_P h_P) - \xi v(h_P) + \beta \left(u(c_{1i}^i) - v(y_2^i/\theta^i) \right) + \beta^2 u(c_{Ri}^i), \quad i = 1, 2 \]

(11)

\[V_U(\theta^i, \xi) = u(c_{1i}^U) + \beta u(c_{2i}^U) + \beta^2 u(c_{Ri}^U), \quad i = 1, 2 \]

(12)

\[V_E(\theta^1, \xi) = u(c_E) - \xi v(e_H) + \beta \left(u(c_2^1) - v(y_2^1/\theta^1) \right) + \beta^2 u(c_{R1}^1), \]

(13)

\[V_E(\theta^2, \xi) = \max\{V_{E1}(\theta^2, \xi), V_{E2}(\theta^2, \xi)\} \]

(14)

where \(\{c_{1i}^U, c_{2i}^U, c_{Ri}^U\} \) denotes the consumption profile of the unemployed (and subscript \(R \) again refers to the retirement period). Depending on the optimal effort choice of an individual with innate productivity \(\theta^2 \) enrolling in education, the right hand side of equation \((14)\) is given by one of the following two expressions:

\[V_{E1}(\theta^2, \xi) = u(c_E) - \xi v(e_H) + \beta \left(u(c_2^1) - v(y_2^1/\theta^1) \right) + \beta^2 u(c_{R1}^1) \]

(15)

\[V_{E2}(\theta^2, \xi) = u(c_E) - \xi v(e_H) + \beta \left(u(c_2^2) - v(y_2^2/\theta^2) \right) + \beta^2 u(c_{R2}^2). \]

(16)

Therefore, by combining the above equations, the life-time utility of a type \((\theta^i, \xi)\) agent can be summarized as

\[V(\theta^i, \xi) = \max\{V_P(\theta^i, \xi), V_U(\theta^i, \xi), V_E(\theta^i, \xi)\}, \quad i = 1, 2. \]

(17)

We assume that the government wants to redistribute from high-productivity to low-productivity individuals. As such, the government must prevent high-productivity individuals from mimicking people with lower productivity in order to gain from this redistribution. Two such possibilities arise in our framework. First, to ensure that type 0 individuals who realize the productivity level \(\theta^2 \) in the second period (i.e., those with innate productivity \(\theta^2 \) choosing education and exerting high effort) weakly prefer the allocation intended for them over the allocation intended for the low-productivity type, we must impose the following self-selection constraint:

\[u(c_E) - \xi v(e_H(q)) + \beta[u(c_2^2) - v(y_2^2/\theta^2)] + \beta^2 u(c_{R2}^2) \geq u(c_E) - \xi v(e_H(q)) + \beta[u(c_2^1) - v(y_2^1/\theta^2)] + \beta^2 u(c_{R1}^1). \]

(18)

Since the first two terms on each side of inequality \((18)\) are identical, the constraint can be simplified to read

\[u(c_2^2) - v(y_2^2/\theta^2) + \beta u(c_{R2}^2) \geq u(c_2^1) - v(y_2^1/\theta^2) + \beta u(c_{R1}^1). \]

(19)

Second, we need a self-selection constraint on the conventional type 2 individuals, i.e., those with realized productivity \(\theta^2 \) in the first and second period, ensuring that they (weakly) prefer the allocation intended for them compared with the allocation intended for a conventional type
\[u(c^2_1) - v(y^2_1/\theta^2) + \beta[u(c^2_2) - v(y^2_2/\theta^2)] + \beta^2 u(c^R_2) \geq u(c^1_1) - v(y^1_1/\theta^2) + \beta[u(c^1_2) - v(y^1_2/\theta^2)] + \beta^2 u(c^1_R). \] (20)

If (19) is binding, then constraint (20) simplifies to
\[u(c^2_1) - v(y^2_1/\theta^2) \geq u(c^1_1) - v(y^1_1/\theta^2). \] (21)

In the rest of the theory section, to simplify the exposition, we will impose (19) as an equality and (21) in the social decision-problem. The relatively simple structure of the incentive constraints is facilitated by our assumption that individuals cannot save in the first period, making type 0 workers who realize productivity \(\theta^2 \) in the second period behave identically to type 2 workers in the second period.

In addition to (19) and (21), we would like to prevent the conventional type 1 and type 2 workers from mimicking type 0 in order to benefit from the education policy and public employment program, respectively. Admittedly, it is not entirely clear how these constraints should be formulated, since the conventional types already have the skills needed to enter the regular labor market. To this end, we make three observations based on the assumptions made above. First, any individual entering public employment must supply \(h_p \) hours of work in the first period and will earn wage rate \(w^1 \) in the second period, regardless of their true innate productivity. Second, individuals of types 1 and 2 entering into education in order to mimic type 0 are required to exert some minimal effort, \(e_c \), to be eligible to receive the education transfer \(c_E \) from the government. Third, the benefit derived by a conventional type 1 or 2 agent from mimicking type 0 is entirely confined to the first period, as it is assumed that these mimickers obtain employment according to their actual (already realized) productivity in the second period.

Given the above discussion, to prevent a conventional type 1 worker from mimicking type 0 in education or public employment, we require that he/she obtains a weakly higher utility in period 1 when working compared to when enrolling in education or public employment, by imposing the following constraints:
\[u(c^1_1) - v(y^1_1/\theta^1) \geq u(w_p h_p) - v(h_p) \] (22)
\[u(c^1_1) - v(y^1_1/\theta^1) \geq u(c_E) - v(e_c). \] (23)

Note that (22) and (23) are the only conditions we need to impose, since they also prevent

21 In the numerical simulations, we impose (19) as a weak inequality and (20) in its full form as we cannot guarantee that (19) is binding under all possible parameter constellations.

22 Given that education effort, in principle, could serve as a signal of worker ability, we assume that the minimal effort level \(e_c \) is sufficiently large to imply that firms are not deterred from remunerating conventional workers of types 1 and 2 according to their actual (already realized) productivity in the second period.
conventional type 2 agents from mimicking type 0. The reason is that $u(c_1^2) - v(y_1^2/\theta^2) > u(c_1^1) - v(y_1^1/\theta^1)$ in a second-best optimum.²³

3.1 Social decision-problem

Let $f_{\xi|\theta}(\xi \mid \theta)$ denote the conditional probability distribution of ξ given θ. The joint probability distribution then becomes $f_{\xi,\theta}(\xi, \theta) = f_{\xi|\theta}(\xi \mid \theta = \theta^1) \pi^1 + f_{\xi|\theta^2}(\xi \mid \theta = \theta^2) \pi^2$, where π^1 and π^2 are the fractions of type 0 agents with innate productivity θ^1 and θ^2, respectively. To shorten the notation, define $f_{\xi|\theta^1}(\xi \mid \theta = \theta^1) = f^1(\xi)$ and $f_{\xi|\theta^2}(\xi \mid \theta = \theta^2) = f^2(\xi)$, with corresponding CDFs F^1 and F^2, and let γ^0, γ^1 and γ^2 be the fractions of types 0, 1, and 2, respectively, in the population, where $\sum_i \gamma^i = 1$.

We assume that the social objective function contains of two parts. The first part is welfaristic and given by a generalized utilitarian objective. The second part is non-welfaristic and depends directly on the number of long-term unemployed, aiming to capture the desire to reduce the overall societal costs of long-term unemployment.²⁴ Formally, the social objective is given by:

$$\phi \int_0^\infty \left[\sum_{i=1,2} \pi^i f^i(\xi) V(\theta^i, \xi) \right] d\xi + \gamma^1 W^1 + \gamma^2 W^2 + \sum_{i=1,2} H^i \left(\gamma^0 \pi^i \int_{\Omega_i} f^i(\xi) d\xi \right),$$

where V and W^i, $i = 1, 2$ are defined in equations (17) and (10), respectively, and H^i is a concave function assumed to be strictly decreasing in the number of long-term unemployed individuals in society, $\gamma^0 \pi^i \int_{\Omega_i} f^i(\xi) d\xi$, for $i = 1, 2$. The H^i-functions are interpretable in terms of social aversion towards long-term unemployment, and this aversion is allowed to vary depending on whether the long-term unemployed are latently high-skilled or low-skilled.²⁵ The welfaristic part of (24) coincides with a utilitarian social welfare function in the special case where $\phi = \gamma^0$, while $\phi > \gamma^0$ represents a case where greater weight is placed on the well-being of type 0 from an ex-ante perspective.

The problem of the government is to choose the pre-tax income and consumption variables $\{y^i_1, y^i_2, c^i_1, c^i_2, c^i_R\}_{i=1,2}$, the transfer payment and quality input in education $\{c_E, q\}$, the time-path of unemployment benefits $\{c^{ul}_1, c^{ul}_2, c^{ul}_R\}$, and the wage rate and hours of work in public employment, $\{w_P, h_P\}$ in order to maximize the social objective (24) subject to the incentive

²³Note that self-selection constraints, as we have formulated them, do not prevent conventional type 1 and type 2 workers from mimicking the unemployed. Since such a scenario strikes us as less likely, and our framework is already quite complex, we abstract from this possibility when formalizing the model. We will, nevertheless, briefly return to the implications of such a constraint in subsection 4.5.

²⁴More general social welfare weights along the lines of Saez and Stantcheva (2016), which depend on income as well as non-income characteristics, could easily be introduced. By focusing on a social welfare function with non-welfaristic elements, our analysis relates to the recent papers on fairness and poverty alleviation by Henry de Frahan and Maniquet (2021) and Maniquet and Neumann (2021).

²⁵With a slight reformulation of the model, an alternative interpretation of the H^i-functions would be that they represent social preferences at the individual level, i.e., each individual attaches disutility to the severity of the problem of long-term unemployment.
compatibility constraints \(19\) and \(21\)-\(23\), and a public resource constraint. The resource constraint for the economy as a whole is written as follows (assuming the interest rate is zero, as indicated above, and by using \(p_q\) to denote the producer price of the publicly provided input good):

\[
\begin{align*}
\gamma_1 & \left[(y_1^1 - c_1^1) + (y_2^1 - c_2^1) - c_R^1 \right] + \gamma_2 \left[(y_1^2 - c_1^2) + (y_2^2 - c_2^2) - c_R^2 \right] \\
+ \gamma_0 & \left(\pi_1 \int_{\Omega^1_E} f^1(\xi) d\xi + \pi^2 \int_{\Omega^2_E} f^2(\xi) d\xi \right) (-c_E + (y_1^1 - c_2^1) - c_R^1) \\
+ \gamma_0 & \pi^2 \left(\int_{\Omega^2_E} f^2(\xi) d\xi \right) (-c_E + (y_2^2 - c_2^2) - c_R^2) \\
+ \gamma_0 & \left(\sum_{i=1,2} \pi_i \int_{\Omega^i_P} f^i(\xi) d\xi \right) \left([\alpha \theta^1 - w_P] h_P + (y_1^1 - c_2^1) - c_R^1 \right) \\
- \gamma_0 & \left(\sum_{i=1,2} \pi_i \int_{\Omega^i_U} f^i(\xi) d\xi \right) \left(c^U_1 + c^U_2 + c^U_R \right) \geq p_q q. \quad (25)
\end{align*}
\]

In (25), \(\Omega^i_E\) is the set of type 0 individuals with innate productivity \(\theta^1\) attending education (thereby obtaining a market productivity of \(\theta^1\) in the second period), while \(\Omega^2_E\) and \(\Omega^2_E\) are the corresponding sets of type 0 individuals of innate productivity \(\theta^2\) attending education and exerting low and high effort, respectively. Formally, \(\xi \in \Omega^i_E\) implies \(V(\theta^i, \xi) = V_{E^i}(\theta^i, \xi)\). Similarly, the sets \(\Omega^i_P\) and \(\Omega^2_P\) are the sets of type 0 individuals of innate productivity \(\theta^1\) and \(\theta^2\), respectively, attending public sector employment in the first period. Therefore, \(\xi \in \Omega^i_P\) implies \(V(\theta^i, \xi) = V_{P^i}(\theta^i, \xi)\). In the final row, \(\Omega^i_U\) is the set of type 0 individuals with innate productivity \(\theta^i\) choosing unemployment in period 1, which leads to long-term unemployment, i.e., exclusion from the labor market; thus, \(\xi \in \Omega^i_U\) implies \(V(\theta^i, \xi) = V_U\) (the notation can be simplified provided the relevant sets are intervals).

The resource constraint reflects that the gross income (or output) is used for private consumption and for public provision of the public input good. Each term on the left hand side is interpretable in terms of the net tax revenue raised from different groups of individuals over their life-cycles. The first row reflects the net tax revenue raised from individuals of types 1 and 2, respectively, while the remaining rows pertain to type 0 individuals (where the public revenue raised depends on the choices these agents made in the first period). In the second and third rows, we measure the net tax revenue raised from type 0 individuals entering education in the first period, and realizing productivity \(\theta^1\) (the second row) and \(\theta^2\) (the third row), respectively, in the second period of their lives, while the the fourth row correspondingly measures the net tax revenue raised from type 0 individuals choosing public employment in the first period. Finally, the left hand side of the fifth row reflects the consumption profile among the unemployed, while the right hand side constitutes the resources spent on the public input good.
3.2 Characterization of activity choices

We now characterize the activity choices of type 0 individuals given the policy instruments set by the government. This characterization will be based on a comparison of the indirect utility levels presented in equations (11)-(14).

Type 0 individuals with innate productivity θ^1 For 0 individuals with innate productivity θ^1, the choice between public employment and education is guided by the following utility difference:

$$V_P(\theta^1, \xi) - V_E(\theta^1, \xi) = u(w_P h_P) - u(c_E) - \xi(v(h_P) - v(e_H)).$$

We assume that $w_P h_P > c_E$ and $h_P > e_H$ at the second best optimum, which is realistic as long as public employment is a full-time job. We can then derive the effort cost for an individual who is indifferent between public employment and education by setting $V_P(\theta^1, \xi) = V_E(\theta^1, \xi)$ and then solve for ξ:

$$\xi_P - E = \frac{u(w_P h_P) - u(c_E)}{v(h_P) - v(e_H)} > 0. \quad (26)$$

Therefore, whenever $\xi < \xi_P - E$ we have $V_P > V_E$, implying that the individual prefers public employment over education, while $\xi > \xi_P - E$ corresponding implies $V_E > V_P$ such that the individual instead prefers education over public employment.

Turning to the choice between education and unemployment, the utility difference becomes

$$V_E(\theta^1, \xi) - V_U(\theta^1, \xi) = [u(c_E) - \xi v(e_H)] - u(c_{1E}) + \beta\left([u(c_2) - v(y_2^1/\theta^1)] - u(c_{2U})\right) + \beta^2[u(c_{R1}) - u(c_{R2})]. \quad (27)$$

For an individual who is indifferent between education and unemployment, we have $V_E(\theta^1, \xi) = V_U(\theta^1, \xi)$ and can derive the corresponding effort threshold:

$$\xi_{E-U} = \frac{1}{v(e_H)} \left([u(c_E) - u(c_{1E})] + \beta\left([u(c_2) - v(y_2^1/\theta^1)] - u(c_{2U})\right) + \beta^2[u(c_{R1}) - u(c_{R2})]\right). \quad (28)$$

Equation (28) means that any type 0 individual of innate productivity θ^1 will prefer unemployment over education if $\xi > \xi_{E-U}$, and vice versa if $\xi < \xi_{E-U}$. We can see that the number of long-term unemployed of innate productivity θ^1 depends positively on the education effort required to be able to enter employment in the regular labor market in the second period and negatively on the income loss associated with unemployment.

Type 0 individuals with innate productivity θ^2 We make similar assumptions for this group; the only difference is that these individuals also make an effort choice if entering education in the first period. If choosing low effort when entering education, or if choosing public employ-
ment, the individual realizes a market productivity of θ^1 in the second period (below the full earnings potential), while the individual reaches the market productivity θ^2 (matching the full earnings potential) if entering education and choosing the high effort level.

An individual who is indifferent between public employment and education with high effort satisfies $V_P(\theta^2, \xi) = V_{E^2}(\theta^2, \xi)$, from which we can derive the effort cost for this marginal individual such that

$$\xi_{P-E^2} = \frac{[u(w_P h_P) - u(c_E)] + \beta ([u(c_2^1 - u(c_2^2)) - [v(y_2^1 / \theta^1) - v(y_2^2 / \theta^2)] + \beta^2[u(c_1^R) - u(c_1^R)]]}{v(h_P) - v(e_H)}.$$ \hspace{1cm} (29)

Similarly, an individual who is indifferent between exerting high and low effort if entering education satisfies $V_{E^2}(\theta^2, \xi) = V_{E^1}(\theta^2, \xi)$. The effort cost for this individual becomes

$$\xi_{E^2-E^1} = \frac{\beta ([u(c_2^2) - u(c_2^1)] - [v(y_2^2 / \theta^2) - v(y_1^1 / \theta^1)] + \beta^2[u(c_2^R) - u(c_1^R)]}{v(e_H) - v(e_L)}.$$ \hspace{1cm} (30)

Finally, if an individual is indifferent between exerting low effort in education and being unemployed, this individual satisfies $V_{E^1}(\theta^2, \xi) = V_U(\theta^2, \xi)$ from which the following critical effort cost can be derived:

$$\xi_{E^1-U} = \frac{1}{v(e_L)} ([u(c_E) - u(c_1^R)] + \beta ([u(c_2^1) - v(y_2^1 / \theta^1)] - u(c_1^L)) + \beta^2[u(c_1^R) - u(c_1^R)].$$ \hspace{1cm} (31)

Ordering of choices We assume that, depending on ξ (from low to high), type 0 individuals with innate productivity θ^1 choose activity in the first period in the following order: public employment, education, and unemployment, whereas the following order applies to type 0 individuals with innate productivity θ^2: public employment, education with high effort, education with low effort, and unemployment. These orderings, which are verified by our numerical simulations, are illustrated in Figures 1 and 2.

Figure 1: Occupational choice thresholds for type 0 individuals with innate productivity θ^1

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>E</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ_{P-E}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ξ_{E-U}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ξ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Occupational choice thresholds for type 0 individuals with innate productivity θ^2

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>E^2</th>
<th>E^1</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ_{P-E^2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\xi_{E^2-E^1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ξ_{E^1-U}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ξ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simplified notation For later use, we introduce the following short notation for the number of type 0 agents in each occupational category in the first period:

\[
N^1_E = |\Omega^1_E| = \gamma^0 \pi^1 \left(F^1(\xi_{E-U}) - F^1(\xi_{P-E}) \right) \tag{32} \\
N^2_{E_1} = |\Omega^2_{E_1}| = \gamma^0 \pi^2 \left(F^2(\xi_{E_{1-U}}) - F^2(\xi_{E_{2-E}}) \right) \tag{33} \\
N^2_{E_2} = |\Omega^2_{E_2}| = \gamma^0 \pi^2 \left(F^2(\xi_{E_{2-E}}) - F^2(\xi_{E_{3-E}}) \right) \tag{34} \\
N^1_U = |\Omega^1_U| = \gamma^0 \pi^1 \left[1 - F^1_{E-U}\right] \tag{35} \\
N^2_U = |\Omega^2_U| = \gamma^0 \pi^2 \left[1 - F^2_{E_{1-U}}\right] \tag{36} \\
N^1_P = |\Omega^1_P| = \gamma^0 \pi^1 F^1_{P-E} \tag{37} \\
N^2_P = |\Omega^2_P| = \gamma^0 \pi^2 F^2_{P-E}. \tag{38}
\]

Here, \(N^1_E\) denotes the number of individuals with innate productivity \(\theta^1\) enrolling in education; \(N^2_{E_1}\) and \(N^2_{E_2}\) denote the number of individuals with innate productivity \(\theta^2\) enrolling in education and choosing low and high effort, respectively; \(N^1_P\) and \(N^2_P\) denote the number of each latent productivity type entering public employment, and \(N^1_U\) and \(N^2_U\) denote the number of each latent productivity type choosing unemployment in the first period.

4 Optimal marginal tax and expenditure policy

We are now ready to characterize the optimal marginal tax policy and public expenditure. In doing so, we make use of the social first-order conditions, presented in Appendix B, and the private first-order conditions for hours of work and savings. For an individual with realized productivity \(\theta^i\), \(i = 1,2\), we can write the first-order condition for work hours as follows in period \(t = 1,2\):

\[
\tau^i_{y,t} \theta^i \equiv \theta^i - \frac{v'(y^i_t/\theta^i)}{u'(c^i_t)}.
\tag{39}
\]

The left hand side of equation (39) is the marginal labor income tax payment, measured as the marginal labor income tax rate, \(\tau^i_{y,t}\), times the before-tax hourly wage rate, \(\theta^i\), and the right hand side measures the discrepancy between the before-tax wage rate and the marginal rate of substitution between leisure and private consumption. As such, we can interpret equation (39) in terms of a tax wedge created by the labor income tax. Note that individuals of types 1 and 2 satisfy equation (39) both in the first and second period, while individuals of type 0 realizing productivity \(\theta^i\) (through the activity choice in the first period) satisfy equation (39) in the second period. Similarly, by using the private first-order condition for saving, we can define an analogous savings tax wedge in the second period for individuals realizing productivities \(\theta^1\) and \(\theta^2\), respectively, in the second period as well as for the unemployed

\[
\tau^i_s \equiv 1 - \frac{u'(c^i_s)}{u'(c^i_R)\beta} \quad \text{for} \quad i = 1,2,U,
\tag{40}
\]
where τ^i_s denotes the marginal savings tax rate.

4.1 Marginal labor income taxes

Let μ_1 denote the Lagrange multiplier associated with the self-selection constraint given in (21), which prevents a true type 2 from mimicking individuals of type 1, while λ denotes the Lagrange multiplier of the resource constraint (measuring the marginal cost of public funds in units of utility). The marginal labor income tax rates facing types 1 and 2 in the first period are characterized in Proposition 1.

Proposition 1. The marginal labor income tax rates in the first period are characterized by the following policy rules:

$$
\tau^1_{y,1} = \frac{\mu_1 u'(c^1_1)}{\lambda \gamma^1} \left(\frac{v'(y^1_1/\theta^1)}{u'(c^1_1)} \frac{1}{\theta^1} - \frac{v'(y^1_1/\theta^2)}{u'(c^1_1)} \frac{1}{\theta^2} \right),
$$

$$
\tau^2_{y,1} = 0.
$$

Proof See Appendix A.1. □

Proposition 1 reproduces a standard result, albeit in a new context: in the second-best optimum, low-skilled individuals face a positive marginal labor income tax rate in the first period, while the marginal labor income tax is zero for the high-skilled.

To characterize the marginal labor income tax rates implemented in the second period, we use $\gamma^{0,1}$ to denote the number of type 0 individuals who realize productivity θ^1 in the second period, i.e.,

$$
\gamma^{0,1} = N^1_E + N^2_E + N^1_P + N^2_P,
$$

which is the sum of type 0 individuals with (i) inherent productivity θ^1 enrolling in education in the first period, (ii) inherent productivity θ^2 enrolling in education and choosing the lower effort level, and (iii) individuals of inherent productivities θ^1 and θ^2 choosing public employment in the first period. By using μ_2 to denote the Lagrange multiplier attached to self-selection constraint (19), the marginal labor income tax rates in the second period are presented in Proposition 2.

Proposition 2. The marginal labor income tax rates implemented in the second period are characterized by the following policy rules:

$$
\tau^1_{y,2} = \frac{\mu_2 u'(c^1_2)}{\lambda (\gamma^1 + \gamma^{0,1})} \left(\frac{v'(y^1_2/\theta^1)}{u'(c^1_2)} \frac{1}{\theta^1} - \frac{v'(y^1_2/\theta^2)}{u'(c^1_2)} \frac{1}{\theta^2} \right),
$$

$$
\tau^2_{y,2} = 0.
$$

Proof See Appendix A.1. □
Thus, the optimal labor market distortions in the second period take a form similar to those in the first period\(^{26}\). However, an important difference is that, in the second period, there is a downward pressure on the marginal labor income tax rate for the low-skilled through the new term \(\gamma^0\). This term arises because the distribution of market productivities in the second period is endogenous due to the activity choices in the first period. Note that the incentives to engage in the different activities are guided by comparisons of utility levels which are governed by total (not marginal) tax payments. Therefore, since the other policy instruments \((c_E, w_P, h_P, b_1,\) and \(b_2)\) directly target these activity choice margins, there is no need to use the marginal labor income taxes as indirect instruments for influencing these choices.

4.2 Marginal savings taxes

By using the private first-order condition for saving together with the social first-order conditions for \(c_2^i\) and \(c_R^i\) for \(c_2^1\) and \(c_R^1\), and for \(c_2^U\) and \(c_R^U\), respectively, presented in Appendix B, we can derive the result presented in Proposition 3.

Proposition 3. The marginal savings taxes are zero for everyone such that

\[\tau^i_s = 0, \quad i = 1, 2, U. \]

Proof See Appendix A.2. \(\square\)

The basic intuition is that since leisure is separable from the other goods in the utility function, a mimicker and the corresponding mimicked agent face the same inter-temporal consumption trade-off\(^{27}\). Despite this separability, however, Proposition 3 is not apparent at first thought, since one may expect marginal tax policy to affect the incentives to engage in the activity choices made by type 0 individuals in the first period. The explanation is, once again, that other policy instruments target the activity choices.

4.3 Optimal public employment policy

To shorten the notation, let

\[\Gamma^i_E = -c_E + (y^i_2 - c^i_2) - c_R^i, \quad i = 1, 2, \]

denote the net life-cycle tax revenue raised from an individual of type 0 entering education in the first period and realizing productivity \(\theta^i\) in the second period. As explained above, type 0

\(^{26}\)It is important to recognize that, although the policy rules are similar, the levels of marginal taxation of the low-skilled may, nevertheless, be very different in periods 1 and 2.

\(^{27}\)See Ordover and Phelps (1979). The result in Proposition 3 would no longer hold if labor supply would be non-separable from consumption in the utility function (see, e.g., Pirttilä and Tuomala 2001).
individuals of innate productivity \(\theta^1 \) entering into education will always realize market productivity \(\theta^1 \), whereas individuals of innate productivity \(\theta^2 \) may either realize market productivity \(\theta^1 \) or \(\theta^2 \) depending on their effort choice. In a similar way, we let

\[\Gamma_P = (\alpha \theta^1 - w_P) h_P + (y_2^1 - c_2^1) - c_R \]

(48)

denote the net life-cycle tax revenue raised from an individual entering public employment is the first period (a choice always rendering the lower market productivity \(\theta^1 \) in the second period irrespective of the latent productivity). By using \(\mu_3 \) to denote the Lagrange multiplier on self-selection constraint (22), which serves to prevent a true type 1 from mimicking type 0 by entering public employment during the first period, the socially optimal wage and work effort, respectively, in public employment are characterized in Proposition 4.

Proposition 4. Under optimal income taxation, the optimal wage \(w_P \) and work effort \(h_P \) in public employment satisfy, respectively, the policy rules:

\[
\frac{\phi}{\gamma^0} \left[u'(w_p h_p) - \lambda \right] h_p \left(N_P^1 + N_P^2 \right) - \lambda \left(\frac{d N_P^1}{d w_P} \Gamma_E^1 + \frac{d N_P^2}{d w_P} \Gamma_E^2 \right) + \mu_3 \left[u'(w_p h_p) w_p - v'(h_p) \right]
\]

(49)

\[
\sum_{i=1,2} N_i^1 \left[\frac{\phi}{\gamma^0} \left(w_p u'(w_p h_p) - v'(h_p) E_f_i(\xi \mid \xi \in \Omega_i p) \right) - \lambda (w_p - \alpha \theta^1) \right] = \lambda \left(\frac{d N_P^1}{d h_P} \Gamma_E^1 + \frac{d N_P^2}{d h_P} \Gamma_E^2 - \frac{d (N_P^1 + N_P^2)}{d h_P} \Gamma_P \right) + \frac{\mu_3}{\gamma^0} \left(u'(w_p) w_p - v'(h_p) \right)
\]

(50)

Proof See Appendix A.3. □

The left hand side of (49) and (50), respectively, reflects the difference between the direct marginal benefit and the direct marginal cost of each instrument. Without any activity choices in the first period, i.e., if the number of individuals in each such group were fixed, the direct marginal benefit would be equal to the direct marginal cost at the social optimum. The discrepancy between them therefore reflects the fact that the wage rate and hours requirement, respectively, in public employment influence the activity choices made by type 0 individuals (the terms proportional to \(\lambda \) on the right hand side) as well as the incentives of type 1 individuals to mimic type 0 (the terms proportional to \(\mu_3 \)). As such, the right hand side of equations (49) and (50) is a consequence of the fact that the government wishes to influence these activity choices.

Let us begin with the policy rule for the wage in public employment given in equation (49). Note first that \(\mu_3 \geq 0 \), which means that the final term on the right hand side contributes
to (weakly) decrease the wage in public employment below the level that equalizes the direct marginal benefit and marginal cost. The intuition is, quite naturally, that the government can prevent type 1 individuals from mimicking type 0 (which type 1 could do through entering public employment) by reducing the wage in public employment.

Turning to the terms proportional to λ in the second row, it can easily be shown that $dN_i^P/dw_P > 0$, $i = 1, 2$. Therefore, given that $dN_{E_1}^P/dw_P = -dN_{R_1}^P/dw_P$ and $dN_{E_2}^P/dw_P = -dN_{R_2}^P/dw_P$, a sufficient condition for the second-best optimal wage to satisfy $\phi u'(w_P,h_P)/\gamma^0 - \lambda > 0$, i.e., to fall short of the wage that equalizes the direct marginal benefit and direct marginal cost, is

$$\Gamma_i^E = -c_E + (y_i^2 - c_i^2) - c_R^i > [\alpha \theta^1 - w_P]h_P + (y_2^1 - c_2^1) - c_R^1 = \Gamma_P, \quad i = 1, 2. \quad (51)$$

Thus, if condition (51) is satisfied, the right hand side of equation (49) is unambiguously positive, in which case $\phi u'(w_P,h_P)/\gamma^0 - \lambda > 0$. The intuition behind condition (51) is that, as long as the present value of net tax revenue is larger if an individual of type 0 chooses education instead of public employment, the government will set a lower wage in public employment to reduce the number of individuals in public employment and increase the number of individuals in education. In other words, public funds are costly, and a lower wage in public employment leads to additional tax revenue which, in turn, opens up for more redistribution.

If self-selection constraint (22) does not bind, such that $\mu_3 = 0$, an analogous sufficient condition for the second-best optimal wage in public employment to be high enough to satisfy $\phi u'(w_P,h_P)/\gamma^0 - \lambda < 0$ becomes

$$\Gamma_i^E = -c_E + (y_i^2 - c_i^2) - c_R^i < [\alpha \theta^1 - w_P]h_P + (y_2^1 - c_2^1) - c_R^1 = \Gamma_P, \quad i = 1, 2. \quad (52)$$

If condition (52) is satisfied, a higher wage in public employment would lead to more tax revenue. In that case, there is an incentive for the government to increase the number of type 0 individuals entering public employment in the first period and correspondingly decrease the number of persons entering into education; let be that this scenario seems less realistic.

To go further, suppose (realistically) that the tax revenue raised from type 0 individuals with innate productivity θ^2 choosing the higher effort level in education is higher than that raised from type 0 agents who realize productivity θ^1 in the second period, i.e., $\Gamma_2^E > \Gamma_1^E$. Then, (51) will automatically hold for $i = 2$ if it holds for $i = 1$. In this case, (51) is equivalent to

$$c_E < [w_P - \alpha \theta^1]h_P, \quad (53)$$

to (weakly) decrease the wage in public employment, namely, the government would like to reduce w_P below the level implied by the “first-best” policy rule if c_E falls short of the subsidy component of public employment in the second-best optimum.

Turning to the policy rule for work hours in public employment, we can see that the left
hand side of equation (50),

\[
\frac{\phi}{\gamma_0} \left(w_p u'(w_p h_p) - v'(h_p) E_f(\xi | \xi \in \Omega_p) \right) - \lambda(w_p - \alpha \theta^1), \quad i = 1, 2,
\]

reflects that a marginal increase in \(h_p \) affects the utility of type 0 individuals entering public employment by \(w_p u'(w_p h_p) - v'(h_p) E_f(\xi | \xi \in \Omega_p) \) on average (where the government attaches the weight \(\phi/\gamma_0 \geq 1 \) to this utility change) as well as incurs a cost to the government corresponding to \(\lambda(w_p - \alpha \theta^1) > 0 \). Note that if (i) type 0 individuals were paid their marginal product in public employment, such that \(w_p = \alpha \theta^1 \), (ii) self-selection constraint (22) does not bind (such that \(\mu_3 = 0 \)), and (iii) in the absence of any behavioral responses in terms of activity choices among type 0 individuals, the right hand side of (50) would be zero. In that case, the choice of \(h_p \) would be guided by an "average rule" for labor supply measured among those in public employment, where the consumption gain of an increase in \(h_p \) (weighted by \(\phi/\gamma_0 \)) is balanced against the value of lost leisure for the group as a whole [28].

Signing the right hand side of equation (50) is more complex than signing the right hand side of equation (49). The reason is that the number of persons in public employment can change in either direction as \(h_p \) increases. An increase in \(h_p \) generates more earned income in the public employment state, but also a higher disutility of effort, making the total effect on utility of remaining in the public employment state ambiguous. To be more specific, if \(N^1_p \) and \(N^2_p \) increase in response to an increase in \(h_p \), we can interpret the results in the same way as we did for an increase in \(w_p \) above, whereas the results would be the opposite if an increase in \(h_p \) leads to a decrease in \(N^1_p \) and \(N^2_p \), respectively.

4.4 Optimal education policy

We begin by presenting the policy rule for the education transfer, \(c_E \), and then continue with the publicly provided education input, \(q \). To simplify the presentation of the policy rule for the education transfer, we shall use the short notation for the net tax revenue raised from each type 0 individual entering into education (\(\Gamma_i^E \), for \(i = 1, 2 \)) and public employment (\(\Gamma_p \)), introduced in the previous subsection, along with the following short notation for the life-time consumption facing an unemployed individual:

\[
C^U = c^U_1 + c^U_2 + c^U_R. \tag{54}
\]

Note that this life-time consumption is determined by (i) the unemployment benefits (\(b_1 \) and \(b_2 \)) in the first and second period and (ii) a potential transfer in the third period via the lump-sum component of the function \(T_3(\cdot) \). [29] In other words, a general savings tax plays the same role

[28] For an individual with effort cost \(\xi \), the undistorted level of labor supply in public employment would be the level of \(h_p \) satisfying \(w_p u'(w_p h_p) = \xi v'(h_p) \).

[29] Although the marginal savings tax is zero, it may still be the case that \(T_3 < 0 \) for individuals in this group.
as a pension system. By using \(\mu_4 \) to denote the Lagrange multiplier attached to self-selection constraint (23), the policy rule for the education transfer is presented in Proposition 5.

Proposition 5. Under optimal income taxation, the optimal education transfer is characterized by the policy rule

\[
\begin{align*}
\frac{\phi}{\gamma_0} u'(c_E) - \lambda & \left(N_E^1 + N_E^2 + N_{E1}^2 \right) + \sum_{i=1,2} H^i(N_U^i) \frac{dN_U^i}{dc_E} \\
= -\lambda & \left(\frac{d(N_E^1 + N_E^2)}{dc_E} \Gamma_E^1 + \frac{dN^2_{E2}}{dc_E} \Gamma_E^2 + \frac{d(N^1_U + N^2_U)}{dc_E} \Gamma_P - \frac{d(N^1_U + N^2_U)}{dc_E} C_U \right) + \frac{\mu_4}{\gamma_0} u'(c_E).
\end{align*}
\]

\[(55)\]

Proof See Appendix A.3. \(\square\)

On the left hand side of equation (55), \(\phi u'(c_E)/\gamma^0 - \lambda \) represents the difference between the direct marginal benefit of the education transfer (measured by the utility gain per recipient times the social welfare weight that the government attaches to this utility gain) minus the direct marginal resource cost. In the absence of any behavioral response to this transfer among type 0 individuals, and in the absence of any incentive for type 1 to mimic type 0 (in which case \(\mu_4 = 0 \)), a “first-best” policy rule would be to choose \(c_E \) such that \(\phi u'(c_E)/\gamma^0 - \lambda = 0 \). Note that this decision-rule would also be second-best optimal in our model if the activity choices were independent of \(c_E \), since leisure is separable in terms of the utility function. This result is analogous to the Atkinson-Stiglitz (1976) theorem.

The second term on the left hand side and the terms in bracket on the right hand side of equation (46) arise because the education transfer influences the activity choices among type 0 individuals. Since \(H^i < 0 \) and \(dN^i_U/dc_E < 0 \), the second term on the left hand side is unambiguously positive and works to increase the education transfer beyond the level that equalizes the direct marginal benefit and marginal cost discussed above. The intuition is that the government attaches disutility to long-term unemployment, which provides an incentive to increase the number of type 0 individuals enrolling in education in the first period and correspondingly reduce the number of long-term unemployed. An alternative interpretation of this component is that it represents a social preference at the individual level; namely, that each individual derives disutility from the severity of the problem of social exclusion, which works in favor of a more generous education policy.

If (for some reason) the right hand side of equation (55) were equal to zero, the results discussed so far would thus imply that the education transfer ought to be chosen such that \(\phi u'(c_E)/\gamma^0 - \lambda < 0 \), i.e., in excess of the level that equalizes the direct marginal benefit and cost.

\[^{30}\text{Such a preference may either reflect concerns for the well-being of the (most likely) poorest group in society, concerns for some of the consequences of social exclusion, or both. As long as the } H^i(\cdot) \text{-functions enter in an additively separable way, this change of assumption regarding the origin of these functions would neither affect the qualitative result presented in Proposition 5 nor its interpretation.}\]
An interesting question is, therefore, whether the second-best optimal education transfer might be even higher, such that the two terms on the left hand side of equation (55) sum to a negative number. It can easily be shown that an increase in c_E increases the number of type 0 individuals with innate productivity θ^1 in the education state as well as increases the number of type 0 individuals with innate productivity θ^2 in both education states (E^1 and E^2), with an exactly corresponding shrinkage of the number of people in unemployment and public employment. Therefore, if self-selection constraint (23) does not bind (meaning that $\mu_4 = 0$), a sufficient condition for the right hand side of equation (55) to be negative would be the following:

$$\Gamma_i^E = -c_E + (y^1_i - c^1_i) - c^R_i > [\alpha \theta^1 - w_P]h_P + (y^2_i - c^2_i) - c^1_i = \Gamma_P, \quad i = 1, 2. \quad (56)$$

Clearly, (56) is analogous to the condition under which it is welfare improving to decrease the wage in public employment below the level associated with a "first-best" policy rule. This condition has an even stronger implication for the education transfer: if $\mu_4 = 0$ and (56) is satisfied, it is second-best optimal to provide c_E in excess of the level where the two terms on the left hand side sum to zero, since an increase in the educational attainment also leads to increased tax revenue. The intuition is, similar to above, that if the present value of the net tax revenue is larger when an individual chooses education instead of public employment, it is optimal to extend c_E even further, as this attracts more individuals to the education state. Since (56) is identical to (51), and if $\Gamma^0_E > \Gamma^1_E$, we can also show, in the same way as above, that a sufficient condition for (56) to hold is $c_E < [w_P - \alpha \theta^1]h_P$. Therefore, the desire to collect tax revenue provides an incentive to simultaneously push up c_E and push down w_P compared to the levels that would otherwise be optimal. This mechanism is counteracted if $\mu_4 > 0$, in which case the government can relax self-selection constraint (23) by lowering c_E. Thus if (26) binds, (56) is no longer a sufficient condition for educational provision beyond the level implied by the "first-best" policy rule. Turning to the public input in education, q, the cost-benefit rule is presented in Proposition 6.

Proposition 6. Under optimal income taxation, the optimal level of the public input, q, is characterized by the policy rule

$$\begin{align*}
\left[\frac{\phi}{\gamma^0} \left(N^1_E v'(e_H) \frac{\partial e_H}{\partial q} + N^2_E v'(e_H) \frac{\partial e_H}{\partial q} + N^2_E v'(e_L) \frac{\partial e_L}{\partial q} \right) - \lambda p \right] + \sum_{i=1,2} H^i (N^i_U) \frac{dN^i_U}{dq} &= -\lambda \left(d \left(N^1_E + N^2_E \right) \Gamma^1_E + \frac{dN^2_E}{dq} \Gamma^2_E + \frac{dN^1_P + N^2_P}{dq} \Gamma_P - \frac{d \left(N^1_U + N^2_U \right) C}{dq} \right). \quad (57)
\end{align*}$$

Proof See Appendix A.3. □

Equation (57) has the same basic structure as equation (55).\footnote{An exception is that self-selection constraint (23) does not affect equation (57), since the minimum effort level} Note that $v'(\cdot) < 0$ and
\(\frac{\partial e_j}{\partial q} < 0 \) for \(j = L, H \). Therefore, the component proportional to \(\phi / \gamma^0 \) on the left hand side is strictly positive and is interpretable as the direct marginal benefit of an increase in the publicly provided input, which is enjoyed by all type 0 individuals enrolling in education. This benefit arises because an increase in \(q \) means that the effort needed to realize latent productivities \(\theta^1 \) and \(\theta^2 \), respectively, decreases. Similarly, \(\lambda p_q \) is interpretable as the direct marginal resource cost of the publicly provided input. By analogy to the policy rule for the education transfer, the discrepancy between the direct marginal benefit and cost is also here due to the fact that the government can influence the activity choices through education policy. The final part of the first row is again a consequence of the assumption that the government (or the individuals) attaches disutility to long-term unemployment; since \(H' < 0 \) and \(dN_U^i / dq < 0 \) for \(i = 1, 2 \), this mechanism works in the direction of over-provision of the public input good compared to the level that equals the direct marginal benefit and cost, ceteris paribus.

The right hand side shows that an increase in the public input good influences welfare via all three activity choices among type 0 individuals: it decreases the number of agents choosing unemployment and public employment, respectively, and increases the number of agents in education (of both effort-types). As such, and in a way similar to the mechanisms driving the optimal education transfer, the sign of the right hand side boils down to whether this transition from unemployment and public employment, respectively, to education leads to higher tax revenue. If it does, we should provide the public input beyond the level where

\[
\frac{\phi}{\gamma^0} \left(N_E^1 v'(e_H) \frac{\partial e_H}{\partial q} + N_E^2 v'(e_H) \frac{\partial e_H}{\partial q} + N_E^1 v'(e_L) \frac{\partial e_L}{\partial q} \right) - \lambda p_q + \sum_{i=1,2} H'' (N_U^i) \frac{dN_U^i}{dq} = 0. \tag{58}
\]

4.5 Optimal unemployment benefits

Let us finally turn to the policy rules for the unemployment benefits. An individual of type 0 choosing unemployment is the first period will remain unemployed also in the second, and the consumption stream of unemployed persons will be \(c_U^1 = b_1, c_U^2 = b_2 - s^U \), and \(c_U^R = s^U - T_3(s^U) \). The optimal unemployment benefits, \(b_1 \) and \(b_2 \), are characterized in Proposition 7.

Proposition 7. Under optimal income taxation, the optimal unemployment benefits are characterized as follows (for \(i = 1, 2 \)):

\[
\left[\frac{\phi}{\gamma^0} \beta^{i-1} u'(b_i) - \lambda \right] N_U + \sum_{j=1,2} H'' (N_U^j) \frac{dN_U^j}{db_i} = \lambda \left(- \frac{d (N_E^1 + N_E^2)}{db_i} \Gamma^1_E + \frac{d (N_U^1 + N_U^2)}{db_i} C^U \right) \tag{59}
\]

is assumed to be fixed and thus independent of the public input good. An alternative assumption would be that the minimum effort level decreases in \(q \) (in a way similar to the low and high effort levels that type 0 can choose), in which case self-selection constraint (23), if it binds, would contribute to a lower public input good.
Proof See Appendix A.3. □

The direct marginal benefit per unemployed individual, $\phi \beta^{i-1} u'(b_i)/\gamma^0$, and the direct marginal cost (in utility units), λ, appears in the square bracket on the left hand side of equation (59). We can also see that the second term on the left hand side is unambiguously negative, since $H^j < 0$ and $dN_{Uj}/db_i > 0$ for $j = 1, 2$, which means that the disutility society attaches to long-term unemployment works to reduce the unemployment benefit below the level where the direct marginal benefit equals the direct marginal cost, ceteris paribus. As such, if the right hand side of equation (59) were equal to zero (for whatever reason), the unemployment benefit would thus satisfy the condition $\phi \beta^{i-1} u'(b_i)/\gamma^0 - \lambda > 0$.

To interpret the right hand side, note that only two of the activity choices, unemployment and education leading to productivity θ^1, are directly affected by a change in the unemployment benefit. Also, note that $dN_{Ej}/db_i = -dN_{Uj}/db_i$ and $dN_{Uj}/db_i = -dN_{Uj}/db_i$. Therefore, the sign of the right hand side of equation (59) is positive if, and only if, $\Gamma_E + C_U > 0$, i.e.,

$$c_1^U + c_2^U + C_U > c_E + C_R - (y_2^1 - c_2^1).$$

Inequality (60) means that the public expenditure per unemployed individual, measured over the individual’s whole life-cycle, exceeds the net public expenditure (public expenditure minus tax revenue) per type 0 individual enrolling in education and realizing productivity level θ^1 in the second period. If this condition is satisfied, it works to further reduce the unemployment benefit below the level where the left hand side of equation (59) is equal to zero. The intuition is once again that public funds are costly, and that a decrease in the number of unemployed persons (with a corresponding increase in educational attainment) leads to increased tax revenue. The opposite conclusion would emerge in the (less likely) scenario where the inequality goes the other way around at the second-best optimum, in which there is an incentive to increase the unemployment benefit in order to avoid pressure on the public finances.

5 Calibration

To gain further insights into the policy implications of social exclusion, we now turn to numerical simulations using a calibrated model. We begin by describing the key ingredients of the calibration: (i) the distribution of innate ability, (ii) the distribution of effort costs, (iii) the functional form of utility, and, (iv) the human capital production function.

As we indicated above, we have neglected the possibility that a true type 1 individual could mimic the unemployment choice made by some of the type zero agents in order to benefit from the redistribution towards the unemployed. If we were to add such a self-selection constraint (and in the unlikely case that the constraint binds), it would further contribute to the "under-provision result", i.e., that the policy rule for the unemployment benefit satisfies $\phi \beta^{i-1} u'(b_i)/\gamma^0 - \lambda > 0$.

27
5.1 The distribution of innate abilities

We use the distribution of market wage rates to approximate the skill distribution using Swedish wage data, and assume that θ^1 represents the 10th wage percentile and θ^2 the 75th percentile of the wage distribution. In the baseline calibration, we have $\theta^1/\theta^2 = 0.57$.

We are agnostic about the latent productivity of type 0 agents by assuming $\pi^1 = \pi^2 = 0.5$, i.e., we assume that there is an equal fraction of latent low-skilled and high-skilled agents in the economy. In the baseline calibration, $\alpha = 0.9$, meaning that type 0 individuals have a market productivity corresponding to 90% of the productivity of conventional type 1 agents (the market productivity of type 0 agents is $\alpha \theta^1$ in the first period).

Type 0 agents constitute 10% of the population in the baseline simulation, implying that $\gamma^0 = 0.1$. The effects of varying γ^0 will be examined in section 6.2. The remaining share of the population, is divided into 40% low-productivity agents (conventional type 1) and 60% high-productivity agents (conventional type 2), implying that $\gamma^1 = 0.4 \times (1 - \gamma^0)$ and $\gamma^2 = 0.6 \times (1 - \gamma^0)$ (given that $\gamma^0 = 0.1$, γ^1 and γ^2 are equal to 0.36 and 0.54, respectively). In this way, we let the numerical value of θ^1 (equal to the 10th percentile) represent the bottom 40 percent of the population (wage percentiles $\{0, 1, \ldots, 39\}$) and the numerical value of θ^2 (equal to the 75th percentile) represent the top 60 percent of the population (wage percentiles $\{40, 41, \ldots, 100\}$).

5.2 The distribution of effort costs

We assume that the effort cost ξ pertaining to type 0 agents is independent of θ and distributed according to a generalized Pareto distribution with parameters $(\sigma_1, \sigma_2, \sigma_3)$, where σ_1 is a location parameter, σ_2 a scale parameter, and σ_3 a shape parameter. The distribution has support on $[\sigma_1, \infty]$. In the simulations, we set $\sigma_1 = 1$, which is a normalization that does not affect the qualitative features of our results. The other distributional parameters are set at $\sigma_2 = 1.5$ and $\sigma_3 = 1$ (we investigate the sensitivity to σ_2 and σ_3 in Appendix D.4). These parameters determine the shape of the effort cost distribution and therefore, as elaborately discussed in the theory section, influence what occupations individuals choose. An illustration of the shape of the effort cost distribution and a potential set of occupational choice thresholds for type 0 agents with innate productivity θ^2 is shown in Figure 3.

33 The data is administered by the Swedish National Mediation Office and contains monthly wages, expressed in full-time equivalents, for all workers in the public sector and around 50 percent of all workers in the private sector, see Statistics Sweden (2016).

34 According to Statistics Sweden, around 13% of the population aged 20-64 (expressed in full-time equivalents) were supported by transfers or social assistance in Sweden in 2020.

35 The reason we do it in this way is that we want θ^1 to approximate the minimum wage. Without this restriction, we would choose θ^1 equal to the 25th percentile (representing percentiles $\{0, \ldots, 49\}$) and θ^2 equal to the 75th percentile (representing percentiles $\{50, \ldots, 100\}$), setting $\gamma^1 = \gamma^2 = 0.5 \times (1 - \gamma^0)$.

28
Figure 3: Illustration of effort cost distribution and corresponding occupational choice regions

5.3 Utility function

Following, e.g., Conesa et al. (2009) and Bastani et al. (2013), consumption utility is given by

\[u(c) = c^{1-\eta} - 1 \]

while the disutility of effort/labor supply is assumed to take the following form:

\[v(h) = \zeta h^k \]

The parameter \(k > 0 \) is related to the elasticity of labor supply and \(\zeta \) is a scaling parameter. In line with Mankiw et al. (2009), we set \(\eta \) (the coefficient of relative risk aversion) to 1.5 and use \(k = 3 \), the latter corresponding to a constant-consumption (Frisch) elasticity of labor supply of \(1/(k-1) = 0.5 \). In the numerical simulations, the scaling parameter \(\zeta \) is allowed to be occupation-specific. For employment, we set \(\zeta = 0.15 \) in order to ensure that the labor supply for conventional agents in our baseline calibration is roughly equal to 1 (interpreted as full-time employment). To ensure empirically plausible shares of type 0 workers in public employment and education, we set \(\zeta = 0.25 \) for public employment and \(\zeta = 0.05 \) for education. We further naturally assume that hours of work in public employment cannot exceed full-time (\(h_\text{P} \leq 1 \)).

36 This value of the Frisch elasticity lies close to the central estimate of 0.4 reported in Whalen and Reichling (2017).

37 The relative magnitude of \(\zeta \) in public employment and education affects the share of type 0 agents in each state, but it does not materially affect the qualitative features of our results nor our comparative statics results.

38 In other words, the government does not promote over-time work among workers in public employment programs, which appears to us as realistically capturing that the government adheres to prevailing employment protection regulations.
5.4 The human capital production function

To obtain numerical values for the wage rates, the function $\kappa(\cdot)$ in (6) must be specified. In the simulations, we abstract from the public education input q and normalize it to one and let $\kappa(e) = ae^{1/\delta}$ with $a > 0$ and $\delta > 1$, the latter implying decreasing-returns-to-scale. The function κ is invertible and has an inverse κ^{-1}, implying that we can solve for the effort levels e_L and e_H described in equations (4) and (5) as follows:

$$e_L = \left(\frac{\theta_1}{a\theta_2}\right)^\delta, \quad \text{and}, \quad e_H = \left(\frac{1}{a}\right)^\delta.$$

(63)

Recall that e_H is the effort required by type 0 agents (of either latent productivity type) to realize their true latent productivity in the second period, whereas e_L is the minimum effort allowing type 0 agents with latent productivity θ_2 to realize the lower productivity θ_1. Intuitively, e_L is decreasing in the productivity ratio θ_1/θ_2 at a rate determined by $\delta = \frac{d\log(e_L)}{d\log(\theta_1/\theta_2)}$. Since the model is calibrated such that an effort of unity corresponds to full-time, the parameters a and δ are chosen to give $e_L = 0.5$ and $e_H = 0.9$, which means that ”low” education effort corresponds to working 50% of a full-time job, and ”high” effort corresponds to working 90% of a full-time job. Solving the system of equations, taking into account that $\theta_1/\theta_2 = 0.57$, yields $a = 1.11$ and $\delta = 1.04$. Regarding the minimum effort level e in equation (23), we use $e = e_L$.

5.5 Social objective function and baseline parameterization

In the simulations, the government is assumed to maximize a slightly more general version of the social welfare function in equation (24), where we attach welfare weights ϕ^0, ϕ^1 and ϕ^2 to the three types of agents, where $\phi^i = \gamma^i, i = 0, 1, 2$ in the baseline calibration. In the baseline in Section 6.1 below, we abstract from the (possible) disutility that the government attaches to long-term unemployment by omitting the functions $H^i(\cdot), i = 1, 2$ in equation (24). Instead, these functions will included in the analysis presented in Section 6.3. Our baseline parameterization is summarized in Table 1.

Recall that e is unrelated to the human capital production function κ, since conventional types already have the skills needed to realize their true productivity. Instead, e should viewed as a minimum effort required to be eligible to receive transfers from the government, assuming some monitoring is possible (e.g., an attendance requirement).
Table 1: Parameters in baseline calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ^1</td>
<td>Productivity of type 1 agents (hourly wage in SEK)</td>
<td>140</td>
</tr>
<tr>
<td>θ^2</td>
<td>Productivity of type 2 agents (hourly wage in SEK)</td>
<td>247</td>
</tr>
<tr>
<td>α</td>
<td>Productivity type 0 agents (as a share of θ^1)</td>
<td>0.90</td>
</tr>
<tr>
<td>γ^0</td>
<td>Share of type 0 agents</td>
<td>0.10</td>
</tr>
<tr>
<td>γ^1</td>
<td>Share of type 1 agents</td>
<td>0.36</td>
</tr>
<tr>
<td>γ^2</td>
<td>Share of type 2 agents</td>
<td>0.54</td>
</tr>
<tr>
<td>π^1</td>
<td>Share of type 0 agents with productivity θ^1</td>
<td>0.50</td>
</tr>
<tr>
<td>π^2</td>
<td>Share of type 0 agents with productivity θ^2</td>
<td>0.50</td>
</tr>
<tr>
<td>η</td>
<td>Coefficient of relative risk aversion</td>
<td>1.5</td>
</tr>
<tr>
<td>k</td>
<td>Labor supply elasticity parameter</td>
<td>3</td>
</tr>
<tr>
<td>σ_1</td>
<td>Location parameter of the Pareto distribution</td>
<td>1</td>
</tr>
<tr>
<td>σ_2</td>
<td>Scale parameter of the Pareto distribution</td>
<td>3</td>
</tr>
<tr>
<td>σ_3</td>
<td>Shape parameter of the Pareto distribution</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>Education scale</td>
<td>1.11</td>
</tr>
<tr>
<td>δ</td>
<td>Education curvature</td>
<td>1.04</td>
</tr>
</tbody>
</table>

6 Quantitative results

6.1 Baseline results

The results for the baseline calibration are presented in Table 2. With a slight abuse of notation, we have expressed the number of individuals enrolled in each of the different occupational states as a percentage of the total number of type 0 individuals of each latent productivity type. For example, N_E^1 is measured by dividing equation (32) by $\gamma^0 \pi^1$ such that $N_E^1 = F^1(\xi_{E-U}) - F^1(\xi_{P-E})$, and similarly for the number of individuals entering the other occupational states in equations (33)-(38).

Footnote 40: The model is set up numerically using MATLAB and solved using the state-of-the-art solver for constrained optimization, KNITRO, developed by Artelys Inc. In this way, we follow earlier papers that have used KNITRO to solve numerically challenging optimal income tax problems, see, e.g., Golosov et al. (2011) and Bastani et al. (2013, 2020).

Footnote 41: In the theory part, we assumed a logical ordering of the integration constraints such that individuals choose activities in the following order (depending on the cost of training): public employment, education (high effort for the latent low-skilled and either low or high effort for the latent high-skilled), and unemployment. In the simulations, we impose these constraints to discipline the solution procedure but then verify that they are non-binding in the social optimum.
We begin by discussing the occupational choices. Among type 0 individuals with latent low-skill, 31% percent choose public employment, 14% choose education, and 55% choose unemployment. Among type 0 individuals with a latent high-skill, 46% choose education with a high effort, 26% choose education with a low effort, 28% choose unemployment, whereas the share in public employment is zero. The latter is a result of tax and expenditure policies designed such that those with low effort costs are better off attending education and exerting a high effort, thereby realizing productivity θ^2 in the second period, rather than attending public employment and realizing productivity $\theta^1 < \theta^2$, even though public employment would entail a higher consumption in the first period.

In accordance with the theoretical results, the marginal income tax rates on high skilled individuals and all marginal savings tax rates are equal to zero. The marginal income tax rates for low-skilled individuals are positive in both periods. These distortions are necessary to support redistribution and reflect binding incentive compatibility constraints. It is interesting to note that the second period marginal income tax rate is lower than the marginal income tax rate in the first period. This is consistent with the downward pressure highlighted in Proposition 2, since the policy instruments are set in such a way that a sizable fraction of type 0 individuals realize a market productivity of θ^1 second period.

A benefit of conducting numerical simulations is that one obtains insights into the structure of average taxation, where T^i_j denote the average tax rate. As can be seen from Table 2 for agents with market productivity θ^1, the average tax rates are equal to 11% and 13% in the first

Table 2: Baseline results

<table>
<thead>
<tr>
<th>Tax rates</th>
<th>Occupation shares</th>
<th>Pre/post-tax income</th>
<th>Benefits/work hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_{y_1}^1$ 0.27</td>
<td>N_P^1 0.31</td>
<td>y_1^1 114.62</td>
<td>$\frac{1}{3} \sum_{i=1}^3 c_i^U$ 73.32</td>
</tr>
<tr>
<td>$\tau_{y_1}^2$ 0</td>
<td>N_E^1 0.14</td>
<td>y_2^1 116.98</td>
<td>c_E 75.73</td>
</tr>
<tr>
<td>$\tau_{y_2}^1$ 0.23</td>
<td>N_U^1 0.55</td>
<td>y_1^2 237.78</td>
<td>w_P 140</td>
</tr>
<tr>
<td>$\tau_{y_2}^2$ 0</td>
<td>N_P^2 0</td>
<td>y_2^2 249.68</td>
<td>h_P 0.7</td>
</tr>
<tr>
<td>τ_s 0</td>
<td>N_{E2}^1 0.46</td>
<td>c_1^1 101.47</td>
<td>h_1^1 0.82</td>
</tr>
<tr>
<td>T_1^1 0.11</td>
<td>N_{E3}^2 0.26</td>
<td>c_2^1 102.03</td>
<td>h_1^2 0.84</td>
</tr>
<tr>
<td>T_2^1 0.13</td>
<td>N_U^2 0.28</td>
<td>c_1^2 146.71</td>
<td>h_2^1 0.96</td>
</tr>
<tr>
<td>T_1^2 0.38</td>
<td>c_2^2 137.45</td>
<td>h_2^2 1.01</td>
<td></td>
</tr>
<tr>
<td>T_2^2 0.45</td>
<td>c_R^2 95.75</td>
<td>h_R^2 128.99</td>
<td></td>
</tr>
</tbody>
</table>

42 According to the Swedish Public Employment Agency (Arbetsförmedlingen Analys 2018:8, Table 3) 62 600 individuals had some form of subsidized public employment in 2018. At the same time, 342 000 were registered as unemployed. Given that only a fraction of the formally unemployed would be classified as type 0 with individuals with latent low productivity, 31% is a realistic share in public employment.

43 55% and 28% long-term unemployed among the latent low-skilled and high-skilled, respectively, might appear large. However, in the absence of any government intervention, unemployment among type 0 agents would amount to 100%.

44 The relationship between the second period and first period marginal tax rate will be further explored in our sensitivity analysis.
and second period, respectively. For agents with market productivity θ^2, the corresponding numbers are 38% and 45%. Thus, as expected, redistribution favors the low-skilled. Note also that the net tax burden is higher for both types in the second period, and that the average second-period tax burden is sizable also for type 1. This result can be understood from the fact that the number of low-skilled workers is higher in the second period than in the first, due to the inflow of type 0 individuals who qualify themselves for ordinary employment. Thus, the income tax raises more revenue from low-skilled workers in the second period compared to the first period.

Finally, turning attention to consumption, we can see that the consumption level when enrolling in public employment is $w_P h_P = 140 \times 0.70 = 98$, while it is equal to $c_E = 75.73$ when enrolling in education. The average consumption of the long-term unemployed across the three periods of life is 73.32. By comparison, the first-period consumption of conventional low-skill and high-skill workers, respectively, are given by 101.47 and 146.71. Thus, the consumption among agent in public employment is slightly lower than the consumption enjoyed by conventional type 1 workers. This is because the required labor supply h_P in public employment is lower than the labor supply exerted by conventional type 1 workers.

6.2 Numerical comparative statics

Let us now use the numerical simulation model to perform a range of different comparative statics analyses. In the main text, we focus on varying the government’s taste for redistribution, the spread of the productivity distribution, and the share of type 0 agents in the economy, respectively. Further numerical results and sensitivity analyses are presented in Appendix D, where the labor supply parameter k, the consumption curvature parameter η, the latent productivity distribution parameters π^1 and π^2, the parameters relating to the human capital production technology, a and δ, and the parameters σ^2 and σ^3 of the effort cost distribution, are varied.

We begin by examining the role of the government’s taste for redistribution by gradually increasing (relative to the Utilitarian benchmark) the social welfare weight attached to type 0 agents and conventional type 1 agents. We do this by fixing $\phi^2 = \gamma^2$ and letting $\phi^i = \phi^i \gamma^i$, $i = 0, 1$, where $\phi \in [1, 3]$. The results are shown in Figure 4 (a detailed table including additional variables is provided in Appendix Table A1).
As the government’s taste for redistribution becomes stronger, the marginal tax rates facing type 1 agents increase, and the average tax rates increasingly favor redistribution towards the low-skilled. A stronger taste for redistribution is also accompanied by decreased labor supply among type 1 agents and increased labor supply among type 2 agents. Regarding the occupational choices among the latent low-skilled of type 0, we can see that the share in public employment is pushed to zero and the share in education increases to begin with. For higher levels of the taste for redistribution, the general pattern is that the latent low-skilled enroll less in education, whereas the share in unemployment increases. The intuition is, of course, that more generous redistribution induces less effort, ceteris paribus. For type 0 agents with latent high productivity, public employment is always zero (consistent with the baseline results). When the taste for redistribution increases, there is an initial increase in education with high effort, and
then a gradual decrease in education with low effort combined with increased unemployment among the latent high-skilled.

Let us now continue with the implications of an increase in the pre-tax inequality as measured by a mean-preserving spread of the productivity distribution. More specifically, we consider different values of θ^1 and θ^2 (implying different ratios θ^2/θ^1) while keeping the average productivity in the economy as a whole, $\gamma^0(\pi^1\theta^1 + \pi^2\theta^2) + \gamma^1\theta^1 + \gamma^2\theta^2$, constant. The results are presented in Figure 5 and Appendix Table A3.

Figure 5: Change in the spread of the productivity distribution θ^2/θ^1 (baseline is $\theta^2/\theta^1 = 1.76$)

Figure 5 shows that an increase in the skill disparity affects the marginal and average tax rates in a way similar to a stronger taste for redistribution. This result was not unexpected, given the concavity of the individual utility function. When the skill level of the low-skilled decreases, and the skill level of the high-skilled increases, the implicit social welfare weight on the low-skilled increases with a corresponding decrease in the social welfare weight attached to the high-skilled.
A mean preserving spread of the productivity distribution also affects the occupational choices in a way similar to a stronger taste for redistribution. As the skill disparity increases, public employment among type 0 agents with a latent productivity of θ^1 is initially pushed to zero, with a corresponding increase in education. Then, for higher levels of the skill disparity, the general pattern is that education decreases and long-term unemployment increases. Eventually, when the skill disparity is very large, all type 0 agents with latent low productivity end up in unemployment. For type 0 agents with latent productivity θ^2, the most interesting thing to note is the substantial shift from education with high effort to education with low effort. This may seem puzzling given that a mean-preserving spread implies a decrease in θ^1, such that the (private and social) gains of realizing θ^1 through education or public employment become smaller. However, at the same time, the government increases the transfers to the unemployment through higher taxation, which lowers the returns to education with high effort.

We finally examine the consequences of increasing the share of type 0 agents in the economy, represented by the parameter γ^0. One way to interpret this sensitivity analysis is in terms of the policy implications of increases in migration flows. We maintain the agnostic view on the distribution of latent productivity among type 0 individuals such that $\pi^1 = \pi^2 = 0.5$ (as in the benchmark). The results are shown in Figure 6 and Appendix Table A2.
Figure 6: Increase in the share of type 0 agents (baseline is $\gamma^0 = 0.1$)

Increases in γ^0 lead to a sharp increase in the marginal tax rate implemented for the low-skilled in the first period (since the share of true type 1 agents decreases), while the marginal tax rate in the second period is slightly less sensitive to this change. Average tax rates increase moderately for both skill-types, since a higher share of type 0 agents in the economy necessitates more public expenditure.

When the share of type 0 agents in the economy is small, public employment is equal to 31% among the latent low-skilled, but then increases sharply and reaches almost 50% when the share of type 0 agents is 0.25. This increase in public employment is accompanied by a decrease in education, and a slight decrease in unemployment. The occupational allocation among type 0 agents with latent productivity θ^2 seems to be less sensitive to increases in γ^0. There is a slight tendency for the share in education with low effort to increase at the expense of the share in education with a high effort.
6.3 Social aversion against long-term unemployment

We will now add the functions $H^i(\cdot), i = 1, 2$, to the social welfare function, in order to capture the disutility that the government (or individuals) attaches to long-term unemployment. More specifically, we consider the following specification:

$$H^i(x) = \psi^i \log (1 - x), i = 1, 2,$$

which has the desirable properties that $H^i(x) < 0$ for $x \in (0, 1)$, $H^i(0) = 0$ and $H^i(x) \to -\infty$ as $x \to 1$, for $i = 1, 2$, capturing that the disutility is zero in the absence of any long-term unemployment, and that the disutility would be very large if all type 0 agents were to be long-term unemployed. The parameter $\psi^i > 0$ controls the overall importance of the social disutility attached to long-term unemployment among type i. In order to choose values of ψ^i fitting our baseline calibration, we examined different values (the results are shown in Appendix Figure D.5) and found that reasonable reactions arise when $\psi^i \in [0, 0.4], i = 1, 2$. Based on this, we choose $\psi^1 = \psi^2 = \psi = 0.2$.

Table 3 shows how the baseline calibration is affected by introducing the functions $H^i(\cdot)$. Comparing Tables 3 and 2 reveals that the social aversion to long-term unemployment has a very limited impact on the optimal income tax policy. However, there is a substantial reduction in optimal unemployment benefits: the average benefit across the three periods of life drops from 73.32 to 54.52. In turn, this policy change implies that the long-term unemployment among type 0 individuals with latent low skill drops by 23 percentage points (from 55 to 32 percent) with a corresponding increase in education by 27 percentage points and a decrease in public employment by 4 percentage points. For type 0 individuals with latent high-skill, long-term unemployment drops by 11 percentage points (from 28 to 17 percent) with an equal increase in education with low effort. Thus, the overall message is that social aversion against long-term unemployment leads to significantly lower unemployment benefits, much less long-term unemployment, and an increase in the number of individuals in education.
Table 3: Baseline results (with externality)

<table>
<thead>
<tr>
<th>Tax rates</th>
<th>Occupation shares</th>
<th>Pre/post-tax income</th>
<th>Benefits/work hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_{y,1}$</td>
<td>0.26</td>
<td>N_P^1</td>
<td>0.27</td>
</tr>
<tr>
<td>$\tau_{y,2}$</td>
<td>0</td>
<td>N_E^1</td>
<td>0.41</td>
</tr>
<tr>
<td>$\tau_{y,2}$</td>
<td>0.22</td>
<td>N_U^1</td>
<td>0.32</td>
</tr>
<tr>
<td>$\tau_{y,2}$</td>
<td>0</td>
<td>N_P^2</td>
<td>0</td>
</tr>
<tr>
<td>$\tau_{y,2}$</td>
<td>0</td>
<td>N_E^2</td>
<td>0.46</td>
</tr>
<tr>
<td>T_1</td>
<td>0.11</td>
<td>N_E^3</td>
<td>0.37</td>
</tr>
<tr>
<td>T_2</td>
<td>0.12</td>
<td>N_U^2</td>
<td>0.17</td>
</tr>
<tr>
<td>T_1</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_2</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How does the social aversion against long-term unemployment affect the optimal policy responses to an increase in the taste for redistribution, a change in the spread of the productivity distribution, and a change in the share of type 0 agents, respectively? To illustrate, we repeat the comparative statics analysis in Section 6.2 taking the $H^i(\cdot)$-functions into account. The results for a selection of outcomes are shown in Figure 7, where we also reproduce the corresponding results without the $H^i(\cdot)$-functions for ease of comparison. Panel a) of Figure 7 shows that the effects on the marginal tax rates implemented for type 1 agents of increasing the taste for redistribution do not materially differ depending on whether the social aversion against long-term unemployment is taken into account. We can also see that an increased taste for redistribution does not change the result that social aversion against unemployment causes the unemployment benefits to be much lower, although the drop in unemployment benefits are smaller when the taste for redistribution is large. Turning to panel b), we find that the increased skill disparity leads to a stronger downwards pressure on second period marginal income tax rate for type 1 workers if the social aversion against long-term unemployment is taken into account. The intuition is, of course, that the unemployment is now much lower than in the baseline. Note also that the unemployment benefits are much lower, but the overall hump-shaped pattern is the same as in the absence of the $H^i(\cdot)$-functions. Finally, panel c) shows that an increase in the share of type 0 agents has very little impact on the share of the long-term unemployed and at the same time causes unemployment benefits to decrease; patterns which are similar with and without the $H^i(\cdot)$-functions.
Figure 7: Comparative statistics (with externality)

(a) Increase in the taste for redistribution (baseline is $\bar{\phi} = 1$)

(b) Change in the skill disparity (baseline is $\theta^2/\theta^1 = 1.76$)

(c) Increase in the share of type 0 agents (baseline is $\gamma^0 = 0.1$)

7 Concluding remarks

In this paper, we have analyzed how taxes, transfers, and public expenditure programs should respond to the presence of individuals with a weak labor market attachment who face the risk of social exclusion. We have operationalized social exclusion using long-term unemployment, thereby capturing the characteristics of social exclusion discussed by Atkinson (1998), i.e., agency, relativity, and dynamics. Long-term unemployment arises in our framework because certain individuals are not sufficiently productive to gain employment in the regular labor market. These individuals, referred to as "type 0" agents, may either be of latent low-skill or high-skill, albeit without the possibility of realizing these skills in the form of market productivity absent proper education or training. The assumption that certain groups have a weak labor market attachment is realistic, not only in light of the challenges posed by migration for modern welfare states, but also because skill-biased technological change has limited the economic opportunities for people with low market productivities.

We would like to emphasize four important conclusions of our analysis. First, the policy rules for marginal labor income taxes and marginal savings taxes are similar to those derived
in standard models of optimal taxation, since the activity choices among type 0 agents are not directly affected by marginal tax policy. Marginal and average taxes are, nevertheless, affected by the endogeneity of the skill distribution due to the inflow of people into the labor market following successful labor market integration. They are also affected by the increased fiscal pressure exerted by the presence of long-term unemployment.

Second, the policy rules underlying the education program, the public employment program, and the unemployment benefit all depend on how an increase in each such instrument influences the present value of net tax revenue that type 0 individuals generate over their life-cycles depending on their activity choices in the first period. This "revenue motive" largely determines whether education and public employment should be overprovided or underprovided relative to standard policy rules that balance the direct marginal benefit and marginal cost. Under plausible assumptions, we find that education should be overprovided relative to such a policy rule.

Third, the problem of long-term unemployment places severe restraint on the redistribution towards people not active in any skill formation (or validation). The intuition behind the second and third conclusions is that the government would like to redistribute towards the low-skilled while at the same time alleviating the problem of long term unemployment.

Fourth, by using a calibrated numerical model, we find that the government’s preference for redistribution and the spread of the skill distribution, respectively, is quite important for the outcome of type 0 agents. In particular, an increased productivity spread can significantly increase the second-best optimal share of long-term unemployed.

Our study is merely a first attempt to include the problem of social exclusion in the theory of optimal redistributive taxation and public expenditure. One interesting extension would be to introduce unemployment cultures or norms that are partly inherited; for instance, by using an overlapping generations model. Another would be to integrate social aversion towards long-term unemployment (which our model includes) with poverty aversion and poverty alleviation. These possible extensions accord well with research in other areas of economics, and we hope to be able to address them in future research.

References

A Proofs of Propositions

A.1 Derivation of optimal labor distortions (Proposition 1 and 2)

First period From Appendix Section B on page 54, we have that the first-order conditions for labor supply and consumption in period 1 can be written as:

\[y_1^1 : (\gamma^1 + \mu_3 + \mu_4)u'(y_1^1/\theta^1)/\theta^1 - \mu_1u'(y_1^1/\theta^2)/\theta^2 = \lambda \gamma^1 \] \hspace{1cm} (A1)

\[c_1^1 : u'(c_1^1) (\gamma^1 + \mu_3 + \mu_4 - \mu_1) = \lambda \gamma^1 \] \hspace{1cm} (A2)

\[y_1^2 : v'(y_1^2/\theta^2)/\theta^2 (\gamma^2 + \mu_1) = \lambda \gamma^2 \] \hspace{1cm} (A3)

\[c_1^2 : u'(c_1^2) (\gamma^2 + \mu_1) = \lambda \gamma^2. \] \hspace{1cm} (A4)

These first-order conditions can readily be re-arranged to produce the following expressions:

\[\lambda \gamma^1 \left(1 - \frac{u'(y_1^1/\theta^1)}{u'(c_1^1)} \frac{1}{\theta^1} \right) = \mu_1u'(c_1^1) \left(\frac{v'(y_1^1/\theta^1)}{u'(c_1^1)} \frac{1}{\theta^1} - \frac{v'(y_1^1/\theta^2)}{u'(c_1^1)} \frac{1}{\theta^2} \right) \] \hspace{1cm} (A5)

\[1 - \frac{v'(y_1^2/\theta^2)}{u'(c_1^2)} \frac{1}{\theta^2} = 0. \] \hspace{1cm} (A6)

Second period Recall the notation \(F^1(\xi_{E-U}) = F^1_{E-U} \) (and similar for the other variables of this type) and let

\[\gamma^{0,1} = \gamma^0 \left[\{ \pi^1(F^1_{E-U} - F^1_{P-E}) + \pi^2(F^2_{E-U} - F^2_{P-E}) \} + \{ \pi^1F^1_{P-E} + \pi^2F^2_{P-E} \} \right]. \] \hspace{1cm} (A7)

and simplify the social first-order conditions for \(y_1^1 \) and \(c_1^1 \) in Appendix Section B. Then, multiply the FOC for \(c_2^1 \) by \(\frac{v'(y_2^1/\theta^1)}{u'(c_2^1)} \frac{1}{\theta^1} \) and add it to the FOC for \(y_2^1 \). Moreover, let for any \(F \):

\[\frac{dF}{dy_2^1} \frac{dF}{dc_2^1} = \frac{dF}{dy_2^1} + \frac{v'(y_2^1/\theta^1)}{u'(c_2^1)} \frac{1}{\theta^1} \frac{dF}{dc_2^1} \] \hspace{1cm} (A8)
denote the utility compensated (for type 1) effect of \(y_2^1 \) on \(F \) (for example on \(F = F_{E-U}^1 = F^1(\xi_{E-U}) \)). We thus obtain:

\[
\begin{align*}
\lambda (\gamma^1 + \gamma^{0,1}) \left(1 - \frac{v'(y_2^1/\theta^1)}{u'(c_2^1)} \frac{1}{\theta^1} \right) &= \mu_2 u'(c_2^1) \left(\frac{v'(y_2^1/\theta^1)}{u'(c_2^1)} \frac{1}{\theta^1} - \frac{v'(y_2^1/\theta^2)}{u'(c_2^1)} \frac{1}{\theta^2} \right) \\
- \gamma^0 \pi^1 H' (\gamma^0 \pi^1 [1 - F_{E-U}]) \frac{d_{\text{comp}}^1 F_{E-U}^1}{d y_2^1} &= \gamma^0 \pi^2 H^2 (\gamma^0 \pi^2 [1 - F_{E^1-U}]) \frac{d_{\text{comp}}^1 F_{E^1-U}^2}{d y_2^2} \\
- \lambda \gamma^0 \pi^1 d_{\text{comp}}^1 \left[\pi^1 (F_{E-U}^1 - F_{P-E}^1) + \pi^2 (F_{E^1-U}^2 - F_{E^2-E^1}) \right] 	imes (-c_E + (y_2^1 - c_2^1 - c_{1R}) \\
- \lambda \gamma^0 \pi^2 d_{\text{comp}}^1 \left[F_{E^2-E}^2 - F_{P-E}^2 \right] 	imes ((\alpha \theta^1 - u_p) h_p + (y_2^1 - c_2^1 - c_{1R}) \\
+ \lambda \gamma^0 \pi^1 (1 - F_{E-U}^1) + \pi^2 (1 - F_{E^1-U}^2) \right] \times (b_1 + b_2 + b_{1R}).
\end{align*}
\]

(A9)

It turns out that all the compensated derivatives above are zero. Too see this, note that:

\[
\begin{align*}
\frac{d \xi_{E-U}}{y_2^1} &= -\beta v'(y_2^1/\theta^1)/\theta^1 \\
\frac{d \xi_{P-E}}{y_2^1} &= 0 \\
\frac{d \xi_{P-E^2}}{y_2^1} &= -\beta v'(y_2^1/\theta^1)/\theta^1 \\
\frac{d \xi_{E^2-E^1}}{y_2^1} &= \beta v'(y_2^1/\theta^1)/\theta^1 \\
\frac{d \xi_{E^1-U}}{y_2^1} &= -\beta v'(y_2^1/\theta^1)/\theta^1 \\
\frac{d \xi_{E^1-U}}{y_2^1} &= \beta u'(c_2^1) \\
\frac{d \xi_{E^1-U}}{y_2^1} &= \beta u'(c_2^1) \\
\frac{d \xi_{E^1-U}}{y_2^1} &= \beta u'(c_2^1) \\
\frac{d \xi_{E^1-U}}{y_2^1} &= \beta u'(c_2^1)
\end{align*}
\]

Hence, the second period optimal labor distortion for type 1 agents is:

\[
\left(1 - \frac{v'(y_2^1/\theta^1)}{u'(c_2^1)} \frac{1}{\theta^1} \right) = \mu_2 u'(c_2^1) \left(\frac{v'(y_2^1/\theta^1)}{u'(c_2^1)} \frac{1}{\theta^1} - \frac{v'(y_2^1/\theta^2)}{u'(c_2^1)} \frac{1}{\theta^2} \right).
\]

(A10)

Let us now proceed with the second period labor distortion for type 2 agents. Using

\[
\gamma^0_{0.2} = \gamma^0 \pi^2 (F_{E^2-E^1}^2 - F_{P-E^2}^2),
\]

(A11)
to simplify the social first-order conditions for \(y_2^2 \) and \(c_2^2 \) in Appendix B and proceeding in the same manner as above, we obtain:

\[
\lambda \left(\gamma^2 + \gamma^0 \right) \left(1 - \frac{v'(y_2^2/\theta^2)}{u'(c_2^2)} \right) = \lambda \gamma^2 \frac{d_{comp}^2}{dy_2^2} \frac{F_{E^2-E^1}}{y_2^2} \times (-c_E + (y_2^1 - c_2^1) - c_2^1)
\]

\[
- \lambda \gamma^2 \frac{d_{comp}^2}{dy_2^2} \frac{F_{E^2-E^1} - F_{P-E^2}}{y_2^2} \times (-c_E + (y_2^2 - c_2^2) - c_2^2)
\]

\[
- \lambda \gamma^2 \frac{d_{comp}^2}{dy_2^2} \frac{F_{P-E^2}}{y_2^2} \times ((\alpha \theta^1 - w_p)h_P + (y_2^1 - c_2^1) - c_2^1).
\]

(A12)

Here it can also be noted that the compensated derivatives are all zero, which can be seen by using the following expressions:

\[
\frac{d\xi_{P-E^2}}{y_2^2} = \frac{\beta v'(y_2^2/\theta^2)/\theta^2}{v(h_P) - v(e_H)}
\]

\[
\frac{d\xi_{E^2-E^1}}{y_2^2} = -\frac{\beta v'(y_2^2/\theta^2)/\theta^2}{v(e_H) - v(e_L)}
\]

\[
\frac{d\xi_{P-E^2}}{c_2^2} = \frac{-\beta u'(c_2^2)}{v(h_P) - v(e_H)}
\]

\[
\frac{d\xi_{E^2-E^1}}{c_2^2} = \frac{\beta u'(c_2^2)}{v(e_H) - v(e_L)}.
\]

Hence, the second period optimal labor distortion for type 2 agents is:

\[
\left(1 - \frac{v'(y_2^2/\theta^2)}{u'(c_2^2)} \right) = 0.
\]

(A13)

A.2 Derivation of optimal savings distortions (Proposition 3)

Using the notation introduced in Appendix Section A.1, the first order conditions for \(c_2^1 \) and \(c_2^2 \) in Appendix Section B can be combined (multiplying the FOC for \(c_2^2 \) with \(- \frac{u'(c_2^2)}{u'(c_2^1)}\)) and add it to the FOC for \(c_2^1 \) to obtain:

\[
\lambda(\gamma^1 + \gamma^0) \left(1 - \frac{u'(c_2^1)}{u'(c_2^1)}/c_2^1 \right)
\]

\[
- \gamma^0 \pi_1 H^v(\gamma^0 \pi_1 [1 - F_{E-U}^1]) \frac{d_{comp}^1}{dc_2^1} \frac{F_{E-U}^1}{dc_2^1} - \gamma^0 \pi_2 H^u(\gamma^0 \pi_2 [1 - F_{E-U}^2]) \frac{d_{comp}^1}{dc_2^1} \frac{F_{E-U}^2}{dc_2^1}
\]

\[
+ \lambda^0 \frac{d_{comp}^1}{dc_2^1} \left(\pi_1 [F_{E-U}^1 - F_{E-U}^1] + \pi_2 [F_{E-U}^2 - F_{E-U}^2] \right) (-c_E + (y_2^1 - c_2^1) - c_2^1)
\]

\[
+ \lambda^0 \frac{d_{comp}^1}{dc_2^1} \left(F_{E-U}^2 - F_{P-E^2}^2 \right) (-c_E + (y_2^2 - c_2^2) - c_2^2)
\]

\[
+ \lambda^0 \frac{d_{comp}^1}{dc_2^1} \left(\pi_1 [F_{P-E^2} + \pi_2 F_{P-E^2}^2] \right) ([\alpha \theta^1 - w_P]h_P + (y_2^1 - c_2^1 - c_2^1)
\]

\[
- \lambda^0 \frac{d_{comp}^1}{dc_2^1} \left(\pi_1 [1 - F_{E-U}^1] + \pi_2 [1 - F_{E-U}^2] \right) (b_1 + b_2 + b_R) = 0.
\]

(A14)
where for any function F:

$$\frac{d^2_{\text{comp}} F}{dc_2^2} = \frac{d F}{dc_2^2} - \frac{u'(c_2^1)}{w'(c_R^1) \beta} \frac{d F}{dc_R^1}. \tag{A15}$$

All the compensated derivatives are zero, which can be seen from the following expressions:

\[
\begin{align*}
\frac{d\xi_{E-U}}{c_2^1} &= \frac{\beta u'(c_2^1)}{v(e_H)} \\
\frac{d\xi_{P-E}}{c_2^1} &= 0 \\
\frac{d\xi_{P-E^2}}{c_2^1} &= \frac{\beta u'(c_2^1)}{v(h_P) - v(e_E)} \\
\frac{d\xi_{E^2-E^1}}{c_2^1} &= -\frac{\beta u'(c_2^1)}{v(e_H) - v(e_L)} \\
\frac{d\xi_{E^1-U}}{c_2^1} &= \frac{\beta u'(c_2^1)}{v(e_L)}
\end{align*}
\]

Hence, the optimal savings distortion for type 1 agents is zero:

$$\left(1 - \frac{u'(c_2^1)}{u'(c_R^1) \beta}\right) = 0. \tag{A16}$$

To proceed with the savings distortion for type 2 agents, we use the first order conditions for c_2 and c_R provided in Appendix B, multiplying the FOC for c_R with $-\frac{u'(c_2^1)}{w'(c_2^1) \beta}$ and add it to the FOC for c_2, to obtain:

\[
\lambda(\gamma^2 + \gamma^{0.2}) \left(1 - \frac{u'(c_2^1)}{u'(c_R^1) \beta}\right) = \\
-\lambda \gamma^0 \pi^2 \frac{d^2_{\text{comp}}}{dc_2^2} (F_{E^2-E^1})(-c_E + (y_2^1 - c_2^1) - c_R^1) \\
+ \lambda \gamma^0 \pi^2 \frac{d^2_{\text{comp}}}{dc_2^2} (F_{E^2-E^1} - F_{P-E^2}) (-c_E + (y_2^1 - c_2^1) - c_R^1) \\
+ \lambda \gamma^0 \pi^2 \frac{d^2_{\text{comp}}}{dc_2^2} (F_{P-E^2}) ([\alpha \theta^1 - w_P] h_P + (y_2^1 - c_2^1) - c_R^1) = 0, \tag{A17}
\]

where for any function F:

$$\frac{d^2_{\text{comp}} F}{dc_2^2} = \frac{d F}{dc_2^2} - \frac{u'(c_2^1)}{w'(c_R^1) \beta} \frac{d F}{dc_R^1}. \tag{A18}$$

Now use the following expressions to establish that all the compensated derivatives are zero:

\[
\begin{align*}
\frac{d\xi_{E^2-E^1}}{c_2^1} &= \frac{\beta u'(c_2^1)}{v(e_H) - v(e_L)} \\
\frac{d\xi_{P-E^2}}{c_2^1} &= -\frac{\beta u'(c_2^1)}{v(h_p) - v(e_h)} \\
\frac{d\xi_{E^1-E^2}}{c_2^1} &= \frac{\beta u'(c_2^1)}{v(e_H) - v(e_L)} - \frac{\beta u'(c_2^1)}{v(h_p) - v(e_h)}
\end{align*}
\]
Hence, we get that the optimal savings distortion for type 2 agents also is zero:

\[
\left(1 - \frac{u'(c^2_2)}{u'(c^2_R)\beta}\right) = 0.
\]

(A19)

A.3 Propositions 4-7

The proofs of Propositions 4-7 follow directly from the social first-order conditions for \(w_p, h_p, c_E, q, b_1\), and \(b_2\) presented in Appendix Section B. More precisely, the policy rules for the wage and hours of work in public employment in Proposition 4 follow by reorganizing the social first-order conditions for \(w_p\) and \(h_p\), respectively; the policy rule for the education benefit in Proposition 5 follows by reorganizing the social first-order condition for \(c_E\); the policy rule for the public input good in Proposition 6 follows by reorganizing the social first-order condition for \(q\); and the policy rules for the unemployment benefit in Proposition 7 follows by reorganizing the social first-order conditions for \(b_1\) and \(b_2\).
B Online Appendix: Social Optimality Conditions

The Lagrangian associated with the problem described in section 3.1 is:

\[
L = \sum_{i=1,2} \pi^i \left(\int_{\Omega_p} V_p(\theta^i, \xi) f^i(\xi) d\xi + \int_{\Omega_U} V_U(\theta^2, \xi) f^i(\xi) d\xi \right) \\
+ \pi^1 \int_{\Omega^1_k} V_{E1}(\theta^1, \xi) f^1(\xi) d\xi + \pi^2 \int_{\Omega_2^1} V_{E2}(\theta^2, \xi) f^2(\xi) d\xi \\
+ \pi^2 \int_{\Omega^1_k} V_{E1}(\theta^2, \xi) f^2(\xi) d\xi + \gamma^1 W^1 + \gamma^2 W^2 + \sum_{i=1,2} H^i \left(\gamma^0 \pi^i \int_{\Omega_U} f^i(\xi) d\xi \right) \\
+ \mu_1 \left(u(c_1^2) - v(y_1^2/\theta^2) - [u(c_1^1) - v(y_1^1/\theta^2)] \right) \\
+ \mu_2 \left(u(c_2^2) - v(y_2^2/\theta^2) + \beta u(c_R^2) - [u(c_2^1) - v(y_2^1/\theta^2) + \beta u(c_R^1)] \right) \\
+ \mu_3 \left(u(c_1^1) - v(y_1^1/\theta^1) - u(w_p h_p) + v(h_p) \right) \\
+ \mu_4 \left(u(c_1^1) - v(y_1^1/\theta^1) - u(c_E) + v(e) \right) \\
+ \lambda \left((y_1^1 - c_1^1) + (y_2^1 - c_1^1) - c_R^1 \right) + \gamma^2 \left((y_1^2 - c_2^1) + (y_2^2 - c_2^1) - c_R^2 \right) \\
+ \gamma^0 \left(\pi^1 \int_{\Omega^1_k} f^1(\xi) d\xi + \pi^2 \int_{\Omega^2_k} f^2(\xi) d\xi \right) \left(-c_E + (y_1^1 - c_2^1) - c_R^1 \right) \\
+ \gamma^0 \pi^2 \left(\int_{\Omega^2_k} f^2(\xi) d\xi \right) \left(-c_E + (y_2^2 - c_2^2) - c_R^2 \right) \\
+ \gamma^0 \left(\sum_{i=1,2} \pi^i \int_{\Omega_p} f^i(\xi) d\xi \right) \left([\alpha \theta^1 - w_P] h_P + (y_1^1 - c_1^1) - c_R^1 \right) \\
- \gamma^0 \left(\sum_{i=1,2} \pi^i \int_{\Omega_U} f^i(\xi) d\xi \right) \left(b_1 + b_2 + b_R \right) - p_q q \right). \tag{B1}
\]
Using the above expressions, the fact that $W^i = u(c_1^i) - v(y_1^i/\theta^i) + \beta (u(c_2^i) - v(y_2^i/\theta^i)) + \beta^2 u(c_R^i)$, and the characterization of the Ω-sets provided in section 3.2, we get

$$
\mathcal{L} = \phi \left(\pi^1 \left(\int_0^{\xi_{E-P-E}} V_P(\theta^1, \xi) f^1(\xi) d\xi + \int_{\xi_{E-U}}^{\xi_{E-U}} V_E(\theta^1, \xi) f^1(\xi) d\xi + \int_{\xi_{E-U}}^{\infty} V_U(\theta^1, \xi) f^1(\xi) d\xi \right)
+ \pi^2 \left(\int_0^{\xi_{E-P-E}^2} V_P(\theta^2, \xi) f^2(\xi) d\xi + \int_{\xi_{E-U}}^{\xi_{E-U}^2} V_E(\theta^2, \xi) f^2(\xi) d\xi + \int_{\xi_{E-U}}^{\infty} V_U(\theta^2, \xi) f^2(\xi) d\xi \right)
+ \int_{\xi_{E-U}^1}^{\xi_{E-U}^1} V_E(\theta^2, \xi) f^2(\xi) d\xi + \int_{\xi_{E-U}}^{\xi_{E-U}^1} V_U(\theta^2, \xi) f^2(\xi) d\xi \right)
+ H^1(\gamma_0^{\pi^1}[1 - F^1(\xi_{E-U})]) + H^2(\gamma_0^{\pi^2}[1 - F^2(\xi_{E-U}^2)])
+ \gamma^1 [u(c_1^1) - v(y_1^0/\theta^1) + \beta (u(c_2^1) - v(y_2^0/\theta^1)) + \beta^2 u(c_R^1)]
+ \gamma^2 [u(c_2^1) - v(y_2^0/\theta^2) + \beta (u(c_2^1) - v(y_2^0/\theta^2)) + \beta^2 u(c_R^1)]
+ \mu_1 \left(u(c_1^1) - v(y_1^0/\theta^2) - [u(c_1^1) - v(y_1^0/\theta^2)] \right)
+ \mu_2 \left(u(c_2^1) - v(y_2^0/\theta^2) + \beta u(c_R^1) - [u(c_2^1) - v(y_2^0/\theta^2) + \beta u(c_R^1)] \right)
+ \mu_3 \left(u(c_1^1) - v(y_1^0/\theta^1) - u(w_p h_p) + v(h_p) \right)
+ \mu_4 \left(u(c_1^1) - v(y_1^0/\theta^1) - u(c_E) + v(\xi) \right)
+ \lambda \left(\gamma^1 \left((y_1^0 - c_1^1) + (y_2^0 - c_1^1) - c_R^1 \right) + \gamma^2 \left((y_2^0 - c_1^2) + (y_2^0 - c_2^2) - c_R^2 \right) \right)
+ \gamma^0 \left(\pi^1 [F^1(\xi_{E-U}) - F^1(\xi_{E-U}^2)] + \pi^2 [F^2(\xi_{E-U}^1) - F^2(\xi_{E-U}^2)] \right) \left(-c_E + (y_2^1 - c_2^1) - c_R^2 \right)
+ \gamma^2 \left(F^2(\xi_{E-U}^2) - F^2(\xi_{E-U}) \right) \left(-c_E + (y_2^2 - c_2^2) - c_R^2 \right)
+ \gamma^0 \left(\pi^1 F^1(\xi_{E-U}) + \pi^2 F^2(\xi_{E-U}^2) \right) \left((\alpha \theta^1 - w_p) h_p + (y_1^1 - c_1^1) - c_R^1 \right)
- \gamma^0 \left(\pi^1 [1 - F^1(\xi_{E-U})] + \pi^2 [1 - F^2(\xi_{E-U}^2)] \right) \left(b_1 + b_2 + b_R - M \right) .
\right) \right)
(B2)

In the above expression, we have that:

$$
V_P(\theta^i, \xi) = u(w_p h_p) - \xi v(h_p) + \beta \left(u(c_1^i) - v(y_1^0/\theta^1) \right) + \beta^2 u(c_R^1), \quad i = 1, 2
\quad \text{(B3)}
$$
$$
V_U(\theta^i, \xi) = u(b_1) + \beta u(b_2) + \beta^2 u(b_R), \quad i = 1, 2
\quad \text{(B4)}
$$
$$
V_E(\theta^i, \xi) = u(c_E) - \xi v(e_H) + \beta \left(u(c_2^i) - v(y_2^0/\theta^1) \right) + \beta^2 u(c_R^i)
\quad \text{(B5)}
$$
$$
V_E(\theta^2, \xi) = u(c_E) - \xi v(e_H) + \beta \left(u(c_2^1) - v(y_2^0/\theta^1) \right) + \beta^2 u(c_R^1)
\quad \text{(B6)}
$$
$$
V_E(\theta^2, \xi) = u(c_E) - \xi v(e_H) + \beta \left(u(c_2^1) - v(y_2^0/\theta^2) \right) + \beta^2 u(c_R^1).
\quad \text{(B7)}
$$
Moreover, notice also that the integration thresholds ξ are given by the following expressions:

$$\xi_{P-E} = \frac{u(whP) - u(c_E)}{v(h_P) - v(e_H)}$$ \hspace{1cm} \text{(B8)}$$

$$\xi_{E-U} = \frac{1}{v(e_H)} \left([u(c_E) - u(b_1)] + \beta \left([u(c^1_E) - v(y^1_2/\theta^1)] - u(b_1) \right) + \beta^2 [u(c^1_R) - u(b_R)] \right)$$ \hspace{1cm} \text{(B9)}$$

$$\xi_{P-E2} = \frac{[u(whP) - u(c_E)] + \beta \left([u(c^2_E) - u(c^2_R)] - [v(y^2_2/\theta^2) - v(y^2_2/\theta^1)] \right) + \beta^2 [u(c^2_R) - u(b_R)]}{v(h_P) - v(e_H)}$$ \hspace{1cm} \text{(B10)}$$

$$\xi_{E2-E1} = \frac{\beta (\left([u(c^2_E) - u(c^2_R)] - [v(y^2_2/\theta^2) - v(y^2_2/\theta^1)] \right) + \beta^2 [u(c^2_R) - u(c^2_L)]}{v(e_H) - v(e_L)}$$ \hspace{1cm} \text{(B11)}$$

$$\xi_{E1-U} = \frac{1}{v(e_L)} \left([u(c_E) - u(b_1)] + \beta \left([u(c^1_E) - v(y^1_2/\theta^1)] - u(b_1) \right) + \beta^2 [u(c^1_R) - u(b_R)] \right).$$ \hspace{1cm} \text{(B12)}$$

In the derivation of the first-order conditions below, we use Leibniz integration rule, but ignore the effects of the policy parameters on the threshold variables in the social welfare function, as due to individual optimization, individuals are at the margin, indifferent between the states. However, the responses of the thresholds to the policy variables still affect the budget constraint of the government as well as the H^i-terms, $i = 1, 2$.

The calculation of the first-order conditions below are simplified by the fact that derivative of the V functions w.r.t to the policy variables are in most cases independent of ξ. For example, consider the derivative of the first term in the Lagrangian w.r.t. y_1^2:

$$\frac{d}{dy_2^1} \int_0^{\xi_{P-E}} V_P(\theta^1, \xi) f^1(\xi) d\xi = \int_0^{\xi_{P-E}} \frac{d}{dy_2^1} [V_P(\theta^1, \xi)] f^1(\xi) d\xi = F^1(\xi_{P-E}) \frac{d}{dy_2^1} [V_P(\theta^1, \xi)],$$ \hspace{1cm} \text{(B13)}$$

where the last equality follows since $\frac{d}{dy_2^1} [V_P(\theta^1, \xi)]$ is independent of ξ.

We begin by providing the first-order conditions for labor supply and consumption in the first period:

$$y_1^1 : -(\gamma^1 + \mu_3 + \mu_4) v'(y_1^1/\theta^1)/\theta^1 + \mu_1 v'(y_1^1/\theta^2)/\theta^2 + \lambda \gamma^1 = 0$$ \hspace{1cm} \text{(B14)}$$

$$c_1^1 : (\gamma^1 + \mu_3 + \mu_4) u'(c_1^1) - \mu_1 u'(c_1^1) - \lambda \gamma^1 = 0$$ \hspace{1cm} \text{(B15)}$$

$$y_2^1 : -\gamma^2 v'(y_1^2/\theta^2)/\theta^2 - \mu_1 v'(y_1^2/\theta^2)/\theta^2 + \lambda \gamma^2 = 0$$ \hspace{1cm} \text{(B16)}$$

$$c_2^1 : \gamma^2 u'(c_2^1) + \mu_1 u'(c_2^1) - \lambda \gamma^2 = 0.$$ \hspace{1cm} \text{(B17)}$$
These can be re-written as:

\[y_1^1 : (\gamma^1 + \mu_3 + \mu_4) u'(y_1^1/\Theta^1)/\Theta^1 - \mu_1 u'(y_1^1/\Theta^2)/\Theta^2 = \lambda \gamma^1 \quad \text{(B18)} \]

\[c_1^1 : u'(c_1^1) (\gamma^1 + \mu_3 + \mu_4 - \mu_1) = \lambda \gamma^1 \quad \text{(B19)} \]

\[y_2^1 : u'(y_1^2/\Theta^2)/\Theta^2 (\gamma^2 + \mu_4) = \lambda \gamma^2 \quad \text{(B20)} \]

\[c_2^2 : u'(c_2^1) (\gamma^2 + \mu_4) = \lambda \gamma^2 \quad \text{(B21)} \]

We henceforth use the short-hand notation \(F^1(\xi_{E-U}) = F^1_{E-U} \) and similar for the other variables of this type. We also recognize that the unemployment externality terms in the social welfare function, \(H^1 \) and \(H^2 \), only depend on \(c_2^1, c_R^1, y_2^1, c_E, b_1, b_2, b_R \), and not the other policy variables.

FOC for \(y_2^1 \)

\[-\phi \beta u'(y_2^1/\Theta^1)/\Theta^1 \left(\pi^1 F^1_{E-U} + \pi^2 \left(F^2_{E-U} + F^2_{E^1-U} - F^2_{E^2-E^1} \right) \right) \]

\[-\beta u'(y_2^1/\Theta^1)/\Theta^1 \gamma^1 \]

\[-\gamma^0 \pi^1 H^1 (\gamma^0 \pi^1 [1 - F^1_{E-U}]) \frac{dF^1_{E-U}}{dy_2^1} - \gamma^0 \pi^2 H^2 (\gamma^0 \pi^2 [1 - F^2_{E^1-U}]) \frac{dF^2_{E^1-U}}{dy_2^1} \]

\[+ \mu^2 u'(y_2^1/\Theta^2)/\Theta^2 \]

\[+ \lambda \gamma^1 \]

\[+ \lambda \gamma^0 \left(\pi^1 [F^1_{E-U} - F^1_{P-E}] + \pi^2 [F^2_{E^1-U} - F^2_{E^2-E^1}] \right) \]

\[+ \lambda \gamma^0 \left(\pi^1 F^1_{P-E} + \pi^2 F^2_{P-E^2} \right) \]

\[+ \lambda \gamma^0 \frac{d}{dy_2^1} \left(\pi^1 [F^1_{E-U} - F^1_{P-E}] + \pi^2 [F^2_{E^1-U} - F^2_{E^2-E^1}] \right) (-c_E + (y_2^1 - c_2^1) - c_R^1) \]

\[+ \lambda \gamma^0 \pi^2 \frac{d}{dy_2^1} (F^2_{E^2-E^1} - F^2_{P-E^2}) (-c_E + (y_2^1 - c_2^1) - c_R^1) \]

\[+ \lambda \gamma^0 \frac{d}{dy_2^1} (\pi^1 F^1_{P-E} + \pi^2 F^2_{P-E^2}) ([\alpha \Theta^1 - w_P] h_P + (y_2^1 - c_2^1) - c_R^1) \]

\[- \lambda \gamma^0 \frac{d}{dy_2^1} (\pi^1 [1 - F^1_{E-U}] + \pi^2 [1 - F^2_{E^1-U}]) (b_1 + b_2 + b_R) = 0 \quad \text{(B22)} \]
FOC for c_2

$$\phi \beta u'(c_2) \left(\pi^1 F_{E-U} + \pi^2 (F_{E2}^2 + F_{E1}^2 - F_{E2}^2) \right)$$

$$+ \beta u'(c_2) \gamma^1$$

$$- \gamma^0 \pi^1 H^1 (\gamma^0 \pi^1 [1 - F_{E-U}]) \frac{dF_{E-U}^1}{dc_2} - \gamma^0 \pi^2 H^2 (\gamma^0 \pi^2 [1 - F_{E1-U}]) \frac{dF_{E1-U}^2}{dc_2}$$

$$- \lambda \gamma^1$$

$$- \lambda^2 \left(\pi^1 [F_{E-U} - F_{P-E}] - \pi^2 [F_{E1-U} - F_{E2-U}] \right)$$

$$- \lambda^2 \left(\pi^1 F_{P-E} + \pi^2 F_{P-E} \right)$$

$$+ \lambda^2 \frac{d}{dc_2} \left(\pi^1 [F_{E-U} - F_{P-E}] + \pi^2 [F_{E1-U} - F_{E2-U}] \right) \left(-c_E + (y_2^1 - c_2^1) - c_R^1 \right)$$

$$+ \lambda^2 \frac{d}{dc_2} \left(\pi^1 F_{P-E} + \pi^2 F_{P-E} \right) \left(\{\alpha \theta^1 - w_P \} h_P + (y_2^1 - c_2^1) - c_R^1 \right)$$

$$- \lambda^2 \frac{d}{dc_2} \left(\pi^1 [1 - F_{E-U}] + \pi^2 [1 - F_{E1-U}] \right) (b_1 + b_2 + b_R) = 0 \quad (B23)$$

FOC for y_2^2

$$- \phi \beta u'(y_2^2/\theta^2)/\theta^2 \left(\pi^2 [F_{E2-E1}^2 - F_{P-E}^2] \right)$$

$$- \beta u'(y_2^2/\theta^2)/\theta^2 \gamma^2$$

$$- \mu^2 u'(y_2^2/\theta^2)/\theta^2$$

$$+ \lambda \gamma^2$$

$$+ \lambda^2 \frac{d}{dy_2^2} \left(F_{E2-E1}^2 - F_{P-E}^2 \right)$$

$$- \lambda^2 \frac{d}{dy_2^2} \left(F_{E2-E1}^2 - F_{P-E}^2 \right) \left(-c_E + (y_2^1 - c_2^1) - c_R^1 \right)$$

$$+ \lambda^2 \frac{d}{dy_2^2} \left(F_{E2-E1}^2 - F_{P-E}^2 \right) \left(-c_E + (y_2^1 - c_2^1) - c_R^1 \right)$$

$$+ \lambda^2 \frac{d}{dy_2^2} \left(F_{P-E}^2 \right) \left(\{\alpha \theta^1 - w_P \} h_P + (y_2^1 - c_2^1) - c_R^1 \right) = 0 \quad (B24)$$
FOC for c_2^2

$$\phi \beta u'(c_2^2) \left(\pi^2 [F_{E^2}^2 - F_{E^2_{-E}}^2] \right)$$

$$+ \beta u'(c_2^2) \gamma$$

$$+ \mu^2 u'(c_2^2)$$

$$- \lambda \gamma$$

$$- \lambda \gamma \pi^2 \frac{d}{dc_2} \left(F_{E^2}^2 - F_{E^2_{-E}}^2\right) (-c_E + (y_2 - c_2^1) - c_R^1)$$

$$+ \lambda \gamma \pi^2 \frac{d}{dc_2} \left(F_{E^2_{-E}}^2 - F_{E^2_{-E}}^2\right) (-c_E + (y_2 - c_2^1) - c_R^1)$$

$$- \lambda \gamma \pi^2 \left(F_{E^2_{-E}}^2 - F_{E^2_{-E}}^2\right)$$

$$+ \lambda \gamma \pi^2 \left(F_{E^2_{-E}}^2 - F_{E^2_{-E}}^2\right) \left(\left(\alpha \theta^1 - w_p\right) h_P + (y_2^1 - c_2^1) - c_R^1\right) = 0$$ \hspace{1cm} (B25)

FOC for c_R^1

$$\phi \beta u'(c_R^1) \left(\pi^1 [F_{E^1}^1 - F_{E^1_{-E}}^1] + \pi^2 \left(F_{E^2}^2 + F_{E^2_{-E}}^2 - F_{E^2_{-E}}^2\right) \right)$$

$$+ \beta u'(c_R^1) \gamma$$

$$- \gamma \pi^1 H^1 \left(\gamma \pi^1 [1 - F^1(\xi_{E-U})] \right) \frac{d}{dc_R^1} \left(F_{E^1}^1 - F_{E^1_{-E}}^1\right)$$

$$- \gamma \pi^1 \gamma^0 \pi^2 \left(F_{E^2}^2 - F_{E^2_{-E}}^2\right) \frac{d}{dc_R^1} \left(F_{E^2}^2 - F_{E^2_{-E}}^2\right)$$

$$- \lambda \gamma^1$$

$$- \lambda \gamma \left(\pi^1 [F_{E^1}^1 - F_{E^1_{-E}}^1] + \pi^2 [F_{E^2}^2 - F_{E^2_{-E}}^2] \right) + \left(\pi^1 F_{E^1}^1 + \pi^2 F_{E^2}^2\right)$$

$$+ \lambda \gamma \frac{d}{dc_R^1} \left(\pi^1 [F_{E^1}^1 - F_{E^1_{-E}}^1] + \pi^2 [F_{E^2}^2 - F_{E^2_{-E}}^2] \right) (-c_E + (y_2 - c_2^1) - c_R^1)$$

$$+ \lambda \gamma \pi^2 \left(F_{E^2_{-E}}^2 - F_{E^2_{-E}}^2\right) (-c_E + (y_2^1 - c_2^1) - c_R^1)$$

$$+ \lambda \gamma \left(F_{E^2_{-E}}^2 + \pi^2 F_{E^2_{-E}}^2\right) \left(\left(\alpha \theta^1 - w_p\right) h_P + (y_2^1 - c_2^1) - c_R^1\right)$$

$$- \lambda \gamma \frac{d}{dc_R^1} \left(\pi^1 [1 - F_{E^1}^1] + \pi^2 [1 - F_{E^2_{-E}}^1] \right) (b_1 + b_2 + b_R) = 0$$ \hspace{1cm} (B26)
FOC for c^2_R

$$
\phi\beta^2 u'(c^2_R) \left(\pi^2 F_{E_1}^2 - F_{P_1}^2 \right)
+ \beta^2 u'(c^2_R) \gamma^2
+ \mu^2 \beta u'(c^2_R)
- \lambda \gamma^2
- \lambda \gamma_0 \pi^2 \left(F_{E_1}^2 - F_{P_1}^2 \right)
- \lambda \gamma_0 \pi^2 \left(\frac{d}{dc^2_R} (F_{E_1}^2) \right) \left(-c_E + (y_2^1 - c_2^1) - c^2_R \right)
+ \lambda \gamma_0 \pi^2 \left(\frac{d}{dc^2_R} (F_{P_1}^2) \right) \left(-c_E + (y_2^2 - c_2^2) - c^2_R \right)
+ \lambda \gamma_0 \pi^2 \left(\frac{d}{dc^2_R} (F_{P_1}^2) \right) \left([\alpha \theta^1 - w_P] h_P + (y_2^1 - c_2^1) - c^2_R \right) = 0 \tag{B27}
$$

FOC for c_E

$$
\phi u'(c_E) \left(\pi^1 F_{E_1}^1 - F_{P_1}^1 \right) + \pi^2 [F_{E_1}^1 - F_{P_1}^1]
- \gamma \pi^1 H^1 \left(\gamma \pi^1 [1 - F_{E_1}^1] \right) \frac{dF_{E_1}^1}{dc_E} - \gamma \pi^2 H^2 \left(\gamma \pi^2 [1 - F_{E_1}^2] \right) \frac{dF_{E_1}^2}{dc_E}
- \lambda \gamma_0 \left(\pi^1 F_{E_1}^1 - F_{P_1}^1 \right) + \pi^2 [F_{E_1}^2 - F_{E_1}^2] \left(-c_E + (y_2^1 - c_2^1) - c^2_R \right)
+ \lambda \gamma_0 \pi^2 \left(\frac{d}{dc_E} (F_{E_2}^2 - F_{P_2}^2) \right) \left(-c_E + (y_2^2 - c_2^2) - c^2_R \right)
+ \lambda \gamma_0 \pi^2 \left(\frac{d}{dc_E} (F_{P_2}^2) \right) \left([\alpha \theta^1 - w_P] h_P + (y_2^1 - c_2^1) - c^2_R \right)
- \lambda \gamma_0 \pi^2 \left(\frac{d}{dc_E} (F_{E_1}^1 - F_{E_1}^2) \right) \left(b_1 + b_2 + b_R \right) - \mu_4 u'(c_E) = 0 \tag{B28}
$$
FOC for $b_i (i = 1, 2, R)$

$$
\phi \beta^{i-1} u'(b_i) \left(\pi^1 [1 - F_{E-U}^1] + \pi^2 [1 - F_{E^1-U}^2] \right) \\
- \gamma^0 \pi^1 H'(\gamma^0 \pi^1 [1 - F_{E-U}^1]) \frac{dF_{E-U}^1}{db_i} - \gamma^0 \pi^2 H''(\gamma^0 \pi^2 [1 - F_{E^1-U}^2]) \frac{dF_{E^1-U}^2}{db_i} \\
- \lambda \gamma^0 \left(\pi^1 [1 - F_{E-U}^1] + \pi^2 [1 - F_{E^1-U}^2] \right) \\
+ \lambda \gamma^0 \frac{d}{db_i} \left(\pi^1 F_{E-U}^1 + \pi^2 F_{E^1-U}^2 \right) (-c_E + (y_2^1 - c_2^1) - c_R) \\
- \lambda \gamma^0 \frac{d}{db_i} \left(\pi^1 [1 - F_{E-U}^1] + \pi^2 [1 - F_{E^1-U}^2] \right) (b_1 + b_2 + b_R) = 0 \quad (B29)
$$

FOC for w_P

$$
\phi h_p u'(w_p h_p) \left(\pi^1 F_{P-E}^1 + \pi^2 F_{P-E}^2 \right) \\
- \lambda \gamma^0 \pi^1 \frac{d}{dw_p} \left(F_{P-E}^1 \right) (-c_E + (y_2^1 - c_2^1) - c_R) \\
- \lambda \gamma^0 \pi^2 \frac{d}{dw_p} \left(F_{P-E}^2 \right) (-c_E + (y_2^2 - c_2^2) - c_R) \\
+ \lambda \gamma^0 \left(\frac{d}{dw_p} \left(\pi^1 F_{P-E}^1 + \pi^2 F_{P-E}^2 \right) \right) \left([\alpha \theta^1 - w_p] h_p + (y_2^1 - c_2^1) - c_R \right) \\
- h_p \left(\pi^1 F_{P-E}^1 + \pi^2 F_{P-E}^2 \right) \right) = 0 \quad (B30)
$$

FOC for h_P The FOC for h_P is a bit more involved, since the derivative of V_P w.r.t. h_P depends on ξ. It takes the form:

$$
\phi \left(\pi^1 \int_0^{\xi_{P-E}} [w_p u'(w_p h_p) - \xi v'(h_p)] f^1(\xi) d\xi + \pi^2 \int_0^{\xi_{P-E}^2} [w_p u'(w_p h_p) - \xi v'(h_p)] f^2(\xi) d\xi \right) \\
- \lambda \gamma^0 \pi^1 \frac{d}{dh_p} \left(F_{P-E}^1 \right) (-c_E + (y_2^1 - c_2^1) - c_R) \\
- \lambda \gamma^0 \pi^2 \frac{d}{dh_p} \left(F_{P-E}^2 \right) (-c_E + (y_2^2 - c_2^2) - c_R) \\
+ \lambda \gamma^0 \left(\frac{d}{dh_p} \left(\pi^1 F_{P-E}^1 + \pi^2 F_{P-E}^2 \right) \right) \left([\alpha \theta^1 - w_p] h_p + (y_2^1 - c_2^1) - c_R \right) \\
+ (\alpha \theta^1 - w_p) \left(\pi^1 F_{P-E}^1 + \pi^2 F_{P-E}^2 \right) \right) = 0 \quad (B31)
$$
The social welfare part of the above expression can be simplified as:

\[
\phi\left(\pi^1 F^1(\xi_{P-E}) \left[w_p u'(w_p h_p) - v'(h_p) \frac{1}{F^1(\xi_{P-E})} \int_{0}^{\xi_{P-E}} f^1(\xi) d\xi \right] + \pi^2 F^2(\xi_{P-E^2}) \left[w_p u'(w_p h_p) - v'(h_p) \frac{1}{F^2(\xi_{P-E})} \int_{0}^{\xi_{P-E^2}} f^2(\xi) d\xi \right] \right) \quad (B32)
\]

which can be written using conditional expectations:

\[
\phi\left(\pi^1 F^1(\xi_{P-E}) \left[w_p u'(w_p h_p) - v'(h_p) E_f^1(\xi \mid \xi < \xi_{P-E}) \right] + \pi^2 F^2(\xi_{P-E^2}) \left[w_p u'(w_p h_p) - v'(h_p) E_f^2(\xi \mid \xi < \xi_{P-E^2}) \right] \right) \quad (B33)
\]

FOC for q

\[
-\frac{\phi}{q} \left(N_{E}^1 u'(e_H) \frac{\partial e_H}{\partial q} + N_{E^2}^2 u'(e_H) \frac{\partial e_H}{\partial q} + N_{E^1}^2 u'(e_L) \frac{\partial e_L}{\partial q} \right) - \lambda p_q + \left(\frac{dN_{E}^1}{dq} + \frac{dN_{E^1}^2}{dq} \right) (-c_E + (y_1^2 - c_2^1) - c_R^1) + \frac{dN_{E^2}^2}{dq} (-c_E + (y_2^2 - c_2^2) - c_R^2) + \left(\frac{dN_{P}^1}{dq} + \frac{dN_{P}^2}{dq} \right) (\alpha^1 - w_p) + \left(\frac{dN_{U}^1}{dq} + \frac{dN_{U}^2}{dq} \right) (c_U^1 + c_U^2 + c_U^3) = 0 \quad (B34)
\]
C Online Appendix: Detailed simulations results, comparative statics

Table A1: Change in the taste for redistribution

<table>
<thead>
<tr>
<th></th>
<th>$\phi^0 = 1\gamma^0$</th>
<th>$\phi^0 = 1.5\gamma^0$</th>
<th>$\phi^0 = 2\gamma^0$</th>
<th>$\phi^0 = 3\gamma^0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau^1_{y,1}$</td>
<td>0.27</td>
<td>0.39</td>
<td>0.45</td>
<td>0.52</td>
</tr>
<tr>
<td>$\tau^1_{y,2}$</td>
<td>0.23</td>
<td>0.39</td>
<td>0.46</td>
<td>0.53</td>
</tr>
<tr>
<td>$\tau^2_{y,1}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\tau^2_{y,2}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T^1_1</td>
<td>0.11</td>
<td>-0.07</td>
<td>-0.12</td>
<td>-0.18</td>
</tr>
<tr>
<td>T^1_2</td>
<td>0.38</td>
<td>0.41</td>
<td>0.42</td>
<td>0.43</td>
</tr>
<tr>
<td>T^2_1</td>
<td>0.13</td>
<td>0.15</td>
<td>0.12</td>
<td>0.09</td>
</tr>
<tr>
<td>T^2_2</td>
<td>0.45</td>
<td>0.46</td>
<td>0.46</td>
<td>0.47</td>
</tr>
<tr>
<td>y^1_1</td>
<td>114.62</td>
<td>100.28</td>
<td>95.39</td>
<td>90.01</td>
</tr>
<tr>
<td>y^1_2</td>
<td>116.98</td>
<td>110.52</td>
<td>105.23</td>
<td>99.42</td>
</tr>
<tr>
<td>y^2_1</td>
<td>237.77</td>
<td>241.7</td>
<td>243.41</td>
<td>245.38</td>
</tr>
<tr>
<td>y^2_2</td>
<td>249.68</td>
<td>251.4</td>
<td>252.23</td>
<td>253.05</td>
</tr>
<tr>
<td>c^1_1</td>
<td>101.47</td>
<td>107.74</td>
<td>106.8</td>
<td>106.09</td>
</tr>
<tr>
<td>c^1_2</td>
<td>146.71</td>
<td>143.54</td>
<td>142.2</td>
<td>140.67</td>
</tr>
<tr>
<td>c^2_1</td>
<td>102.03</td>
<td>93.96</td>
<td>92.43</td>
<td>90.6</td>
</tr>
<tr>
<td>c^2_2</td>
<td>137.45</td>
<td>136.21</td>
<td>135.61</td>
<td>135.02</td>
</tr>
<tr>
<td>c^3_1</td>
<td>95.75</td>
<td>88.17</td>
<td>86.67</td>
<td>85.02</td>
</tr>
<tr>
<td>c^3_2</td>
<td>128.99</td>
<td>127.82</td>
<td>127.33</td>
<td>126.71</td>
</tr>
<tr>
<td>$\frac{1}{3}\sum_{i=1}^{3} c_i^U$</td>
<td>73.31</td>
<td>76.74</td>
<td>77.98</td>
<td>79.14</td>
</tr>
<tr>
<td>h^1_1</td>
<td>0.82</td>
<td>0.72</td>
<td>0.68</td>
<td>0.64</td>
</tr>
<tr>
<td>h^1_2</td>
<td>0.96</td>
<td>0.98</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>h^2_1</td>
<td>0.84</td>
<td>0.79</td>
<td>0.75</td>
<td>0.71</td>
</tr>
<tr>
<td>h^2_2</td>
<td>1.01</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
</tr>
<tr>
<td>w_P</td>
<td>140</td>
<td>140</td>
<td>138.29</td>
<td>137.65</td>
</tr>
<tr>
<td>h_P</td>
<td>0.7</td>
<td>0.99</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_E</td>
<td>75.73</td>
<td>91.59</td>
<td>93.12</td>
<td>94.83</td>
</tr>
<tr>
<td>N^1_E</td>
<td>0.31</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N^2_E</td>
<td>0.14</td>
<td>0.42</td>
<td>0.39</td>
<td>0.34</td>
</tr>
<tr>
<td>N^1_P</td>
<td>0.55</td>
<td>0.58</td>
<td>0.61</td>
<td>0.66</td>
</tr>
<tr>
<td>N^2_P</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N^1_U</td>
<td>0.26</td>
<td>0.19</td>
<td>0.19</td>
<td>0.17</td>
</tr>
<tr>
<td>N^2_U</td>
<td>0.46</td>
<td>0.51</td>
<td>0.51</td>
<td>0.5</td>
</tr>
<tr>
<td>N^1_{E1}</td>
<td>0.28</td>
<td>0.29</td>
<td>0.31</td>
<td>0.32</td>
</tr>
<tr>
<td>N^2_{E1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A2: Change in the share of type 0 agents γ^0

<table>
<thead>
<tr>
<th></th>
<th>$\gamma^0 = 0.1$</th>
<th>$\gamma^0 = 0.15$</th>
<th>$\gamma^0 = 0.20$</th>
<th>$\gamma^0 = 0.25$</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_{y1}^1</td>
<td>0.27</td>
<td>0.28</td>
<td>0.31</td>
<td>0.34</td>
</tr>
<tr>
<td>τ_{y1}^2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>τ_{y2}^1</td>
<td>0.23</td>
<td>0.23</td>
<td>0.24</td>
<td>0.26</td>
</tr>
<tr>
<td>τ_{y2}^2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>τ_s^1</td>
<td>0.11</td>
<td>0.16</td>
<td>0.16</td>
<td>0.18</td>
</tr>
<tr>
<td>τ_s^2</td>
<td>0.38</td>
<td>0.4</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>τ_1^1</td>
<td>0.13</td>
<td>0.14</td>
<td>0.17</td>
<td>0.2</td>
</tr>
<tr>
<td>τ_1^2</td>
<td>0.45</td>
<td>0.46</td>
<td>0.48</td>
<td>0.49</td>
</tr>
<tr>
<td>τ_2^1</td>
<td>0.27</td>
<td>0.28</td>
<td>0.31</td>
<td>0.34</td>
</tr>
<tr>
<td>τ_2^2</td>
<td>0.38</td>
<td>0.4</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>τ_3^1</td>
<td>0.11</td>
<td>0.16</td>
<td>0.16</td>
<td>0.18</td>
</tr>
<tr>
<td>τ_3^2</td>
<td>0.38</td>
<td>0.4</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>τ_4^1</td>
<td>0.13</td>
<td>0.14</td>
<td>0.17</td>
<td>0.2</td>
</tr>
<tr>
<td>τ_4^2</td>
<td>0.45</td>
<td>0.46</td>
<td>0.48</td>
<td>0.49</td>
</tr>
<tr>
<td>τ_5^1</td>
<td>0.27</td>
<td>0.28</td>
<td>0.31</td>
<td>0.34</td>
</tr>
<tr>
<td>τ_5^2</td>
<td>0.38</td>
<td>0.4</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>τ_6^1</td>
<td>0.11</td>
<td>0.16</td>
<td>0.16</td>
<td>0.18</td>
</tr>
<tr>
<td>τ_6^2</td>
<td>0.38</td>
<td>0.4</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>τ_7^1</td>
<td>0.13</td>
<td>0.14</td>
<td>0.17</td>
<td>0.2</td>
</tr>
<tr>
<td>τ_7^2</td>
<td>0.45</td>
<td>0.46</td>
<td>0.48</td>
<td>0.49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>y_1^1</th>
<th>y_1^2</th>
<th>y_1^3</th>
<th>y_1^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_1^1</td>
<td>114.62</td>
<td>116.43</td>
<td>115.26</td>
<td>114.67</td>
</tr>
<tr>
<td>y_1^2</td>
<td>116.98</td>
<td>118.05</td>
<td>118.94</td>
<td>119.79</td>
</tr>
<tr>
<td>y_1^3</td>
<td>237.77</td>
<td>240.33</td>
<td>241.86</td>
<td>243.25</td>
</tr>
<tr>
<td>y_1^4</td>
<td>249.68</td>
<td>251.94</td>
<td>255.15</td>
<td>258.31</td>
</tr>
<tr>
<td>c_1^1</td>
<td>101.47</td>
<td>97.91</td>
<td>96.48</td>
<td>94.44</td>
</tr>
<tr>
<td>c_1^2</td>
<td>146.71</td>
<td>144.63</td>
<td>143.41</td>
<td>142.33</td>
</tr>
<tr>
<td>c_1^3</td>
<td>102.03</td>
<td>100.99</td>
<td>98.41</td>
<td>96.43</td>
</tr>
<tr>
<td>c_1^4</td>
<td>137.45</td>
<td>135.81</td>
<td>133.54</td>
<td>131.33</td>
</tr>
<tr>
<td>c_2^1</td>
<td>95.75</td>
<td>94.78</td>
<td>92.35</td>
<td>90.48</td>
</tr>
<tr>
<td>c_2^2</td>
<td>128.99</td>
<td>127.45</td>
<td>125.32</td>
<td>123.26</td>
</tr>
</tbody>
</table>

| | $\frac{1}{3} \sum_{i=1}^{3} c_i^U$ | 73.31 | 72.22 | 69.94 | 67.64 |

<table>
<thead>
<tr>
<th></th>
<th>h_1^1</th>
<th>h_1^2</th>
<th>h_1^3</th>
<th>h_1^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1^1</td>
<td>0.82</td>
<td>0.83</td>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td>h_1^2</td>
<td>0.96</td>
<td>0.97</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>h_1^3</td>
<td>0.84</td>
<td>0.84</td>
<td>0.85</td>
<td>0.86</td>
</tr>
<tr>
<td>h_1^4</td>
<td>1.01</td>
<td>1.02</td>
<td>1.03</td>
<td>1.05</td>
</tr>
<tr>
<td>w_P</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>h_P</td>
<td>0.7</td>
<td>0.69</td>
<td>0.67</td>
<td>0.64</td>
</tr>
<tr>
<td>c_E</td>
<td>75.73</td>
<td>75.05</td>
<td>72.83</td>
<td>69.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>N_1^1</th>
<th>N_1^2</th>
<th>N_1^3</th>
<th>N_1^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_1^1</td>
<td>0.31</td>
<td>0.34</td>
<td>0.39</td>
<td>0.47</td>
</tr>
<tr>
<td>N_1^2</td>
<td>0.14</td>
<td>0.13</td>
<td>0.08</td>
<td>0.01</td>
</tr>
<tr>
<td>N_1^3</td>
<td>0.55</td>
<td>0.54</td>
<td>0.53</td>
<td>0.52</td>
</tr>
<tr>
<td>N_1^4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N_2^1</td>
<td>0.26</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>N_2^2</td>
<td>0.46</td>
<td>0.45</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>N_2^3</td>
<td>0.28</td>
<td>0.28</td>
<td>0.27</td>
<td>0.27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>N_2^1</th>
<th>N_2^2</th>
<th>N_2^3</th>
<th>N_2^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_2^1</td>
<td>0.28</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>N_2^2</td>
<td>0.46</td>
<td>0.45</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>N_2^3</td>
<td>0.28</td>
<td>0.28</td>
<td>0.27</td>
<td>0.27</td>
</tr>
</tbody>
</table>

61
Table A3: Change in the spread of the productivity distribution (mean-preserving spread)

<table>
<thead>
<tr>
<th></th>
<th>$\theta^2/\theta^1 = 1.23$</th>
<th>$\theta^2/\theta^1 = 1.77$</th>
<th>$\theta^2/\theta^1 = 3.04$</th>
<th>$\theta^2/\theta^1 = 4.08$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_{y,1}^2$</td>
<td>0.13</td>
<td>0.27</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>$\tau_{y,2}^2$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\tau_{y,1}^2$</td>
<td>0.11</td>
<td>0.23</td>
<td>0.31</td>
<td>0.32</td>
</tr>
<tr>
<td>$\tau_{y,2}^2$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T_1^1</td>
<td>0.28</td>
<td>0.11</td>
<td>-0.65</td>
<td>-1.45</td>
</tr>
<tr>
<td>T_2^1</td>
<td>0.28</td>
<td>0.38</td>
<td>0.46</td>
<td>0.49</td>
</tr>
<tr>
<td>T_1^2</td>
<td>0.33</td>
<td>0.13</td>
<td>-0.59</td>
<td>-1.32</td>
</tr>
<tr>
<td>T_2^2</td>
<td>0.4</td>
<td>0.45</td>
<td>0.51</td>
<td>0.53</td>
</tr>
<tr>
<td>y_1^1</td>
<td>161.62</td>
<td>114.22</td>
<td>59.36</td>
<td>40.46</td>
</tr>
<tr>
<td>y_2^1</td>
<td>168.19</td>
<td>116.62</td>
<td>61.36</td>
<td>41.94</td>
</tr>
<tr>
<td>y_1^2</td>
<td>202.09</td>
<td>237.86</td>
<td>280.69</td>
<td>299.16</td>
</tr>
<tr>
<td>y_2^2</td>
<td>218.41</td>
<td>249.71</td>
<td>292.91</td>
<td>309.36</td>
</tr>
<tr>
<td>c_1^1</td>
<td>116.52</td>
<td>101.39</td>
<td>97.83</td>
<td>99.19</td>
</tr>
<tr>
<td>c_2^1</td>
<td>144.56</td>
<td>146.63</td>
<td>151.12</td>
<td>153.02</td>
</tr>
<tr>
<td>c_1^2</td>
<td>112.1</td>
<td>101.98</td>
<td>97.49</td>
<td>97.14</td>
</tr>
<tr>
<td>c_2^2</td>
<td>130.34</td>
<td>137.39</td>
<td>142.77</td>
<td>146.33</td>
</tr>
<tr>
<td>$\frac{1}{3}\sum_{i=1}^3 c_i^U$</td>
<td>65.39</td>
<td>73.24</td>
<td>77.25</td>
<td>75.69</td>
</tr>
<tr>
<td>h_1^1</td>
<td>0.91</td>
<td>0.82</td>
<td>0.64</td>
<td>0.56</td>
</tr>
<tr>
<td>h_2^1</td>
<td>0.92</td>
<td>0.96</td>
<td>1</td>
<td>1.02</td>
</tr>
<tr>
<td>h_1^2</td>
<td>0.94</td>
<td>0.83</td>
<td>0.67</td>
<td>0.58</td>
</tr>
<tr>
<td>h_2^2</td>
<td>0.99</td>
<td>1.01</td>
<td>1.05</td>
<td>1.05</td>
</tr>
<tr>
<td>w_P</td>
<td>160.68</td>
<td>139.68</td>
<td>92.2</td>
<td>72.05</td>
</tr>
<tr>
<td>h_P</td>
<td>0.59</td>
<td>0.7</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c_E</td>
<td>72.61</td>
<td>75.59</td>
<td>74.58</td>
<td>60.15</td>
</tr>
<tr>
<td>N_1^P</td>
<td>0.6</td>
<td>0.31</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N_1^E</td>
<td>0</td>
<td>0.14</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>N_1^U</td>
<td>0.4</td>
<td>0.55</td>
<td>0.7</td>
<td>1</td>
</tr>
<tr>
<td>N_2^P</td>
<td>0.41</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N_2^E</td>
<td>0.2</td>
<td>0.26</td>
<td>0.45</td>
<td>0.41</td>
</tr>
<tr>
<td>N_2^U</td>
<td>0.07</td>
<td>0.46</td>
<td>0.37</td>
<td>0.35</td>
</tr>
<tr>
<td>N_2^U</td>
<td>0.32</td>
<td>0.28</td>
<td>0.19</td>
<td>0.24</td>
</tr>
</tbody>
</table>
D Online Appendix: Further numerical results and sensitivity analysis

D.1 The labor supply parameter k

We vary the labor supply parameter k, which is related to the Frisch elasticity of labor supply, within the interval of $[2, 4]$.

Figure A1: Sensitivity with respect to the labor supply parameter k.

![Graphs showing sensitivity analysis results]
D.2 The consumption curvature parameter η

We vary the coefficient of relative risk aversion η in the interval $[0.9, 1.8]$. Notice that $\eta = 1$ corresponds to the log-specification of the utility of consumption which implies a moderate curvature of consumption, whereas the value of 1.8 implies a curvature that lies well beyond most common estimates (see e.g., Chetty 2004).

Figure A2: Sensitivity with respect to the consumption curvature parameter η.

D.3 The latent productivity distribution parameters π^1 and π^2

We let $\pi^2 = 1 - \pi^1$ and let it vary between 0 and 1.
Figure A3: Sensitivity with respect to parameters π^1 and $\pi^2 = 1 - \pi^1$.

![Marginal tax rates (type 1 agents)](image)
![Average tax rates](image)
![Occupation choices for type 1 agents](image)
![Occupation choices for type 2 agents](image)
![Share of type 0 with productivity θ^1](image)
![Share of type 0 with productivity θ^2](image)
![Consumption](image)
![Labor supply](image)
D.4 Sensitivity with respect to the scale (σ_2) and shape (σ_3) parameters of the effort cost distribution

Figure A4: Sensitivity with respect to the scale parameter σ_2.
Figure A5: Sensitivity with respect to the shape (tail index) parameter σ_3.

D.5 The selection of the coefficient ψ

Here, we demonstrate the sensitivity of the results along a set of key dimensions to changing the strength of the social aversion to long-term unemployment. The vertical line indicates the value of $\psi = 0.01$ that we have used in the main text.
Figure A6: Externality weight parameter ψ.